Moeller

Hardware and Engineering
DV6-340-...
Vector Frequency Inverters

01/02 AWB8230-1415GB

1st published 2002, edition 01/02
© Moeller GmbH, Bonn
Authors: Holger Friedrich, Jörg Randermann
Editor: Michael Kämper
Translator: Dominik Kreuzer

All brand and product names are trademarks or registered trademarks of the owner concerned.
All rights reserved, including those of the translation.
No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any otherprocess) or processed, duplicated or distributed by means of electronic systems without written permission of Moeller GmbH, Bonn.

Subject to alterations without notice.

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighbouring units that are live.
- Follow the engineering instructions (AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50 110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference do not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60 364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60 204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
- According to their degree of protection frequency inverters may feature during operation live, bright metal, or possibly moving, rotating parts or hot surfaces.
- The impermissible removal of the necessary covers, improper installation or incorrect operation of motor or frequency inverter may cause the failure of the device and may lead to serious injury or damage.
- The relevant national regulations apply to all work carried on live frequency inverters.
- The electrical installation must be carried out in accordance with the relevant regulations (e. g. with regard to cable cross sections, fuses, PE).
- All work relating to transport, installation, commissioning and maintenance must only be carried out by qualified personnel. (IEC 60364 and HD 384 and national work safety regulations).
- Installations fitted with frequency inverters must be provided with additional monitoring and protective devices in accordance with the relevant safety regulations etc. Modifications to the frequency inverters using the operating software are permitted.
- All shrouds and doors must be kept closed during operation.
- In order to reduce hazards to persons or equipment, the user must include in the machine design measures that restrict the consequences of a malfunction or failure of the drive (increased motor speed or sudden standstill of motor). These measures include:
- Other independent devices for monitoring safety-related variables (speed, travel, end positions etc.).
- Electrical or non-electrical system related measures (interlocks or mechanical interlocks).
- Live parts or cable connections of the frequency inverter must not be touched after it has been disconnected from the power supply due to the charge in capacitors. Appropriate warning signs must be provided.

Contents

4 Operating the DV6 45
Initial startup 45 45
LCD keypad 46
Operation with LCD keypad 46

- Menu overview 47
- Changing display and Basic parameters 48
- Changing the parameters of the extended parameter groups 48
Display after the supply voltage is applied 49
Connection examples 50
- Operation using an external potentiometer 50
- Operation through an analog setpoint value 50
- Operation with fixed frequencies 51
Operational warnings 52
5 Programming the control signal terminals53
Overview 53
Analog outputs - AM, AMI and FM 58
- Voltage output (AM) 58
- Current output (AMI) 59
- Frequency output (FM) 59
Analog inputs, terminals $\mathrm{O}, \mathrm{O} 2$ and OI 61
- Frequency setpoint definition 61
- Matching of terminals 0,02 and OI 62
- Analog setpoint value matching 63
Programmable digital inputs 1 to 8 66
- Start/stop 68
- Fixed frequency selection (FF1 to FF4) 69
- Bitwise fixed frequency selection (SF1 to SF7) 71
- Analog input changeover (AT) 73
- Second time ramp 2CH 74
- Controller inhibit and coasting (free run stop - FRS) 75
- External fault message (EXT) 76
- Unattended start protection USP 77
- Reset (RST) 78
- Jog mode (JOG) 79
- Change over vector parameters (CAS) 81
- PTC/NTC thermistor input, terminal TH 82
- Software protection (SFT) 83
- Motor potentiometer functions: accelerate (UP) - decelerate (DWN) - Reset frequency (UDC) 84
- Use second and third parameter set (SET/SET3) 86
- Activate DC braking DB 88
- Change over current limit (OLR) 90
- Heavy mains starting (CS) 91
- Setpoint value through keypad (OPE) 93
- Torque limitation (TL), torque selection (TRQ1 and TRQ2) 94
- Three-wire control (STA - STP - F/R) 96
- Activating/deactivating PID control (PID)
Resetting PID and integral component (PIDC) 97
- Changeover from PI to P control (PPI) 98
- Brake enable confirmation (BOK) 100
Programmable digital outputs 11 to 15 101
- Frequency arrival signal FA1/FA2/FA3/FA4/FA5 102
- Run signal (RUN) 104
- Overload signal OL, OL2 105
- PID control deviation (OD) 106
- Fault signal (AL) 107
- Release brake (BRK) and brake fault (BER) 108
- Zero frequency (ZS) 109
- Torque exceeded (OTQ) 110
- Torque limitation (TRQ) 111
- Instant stop (IP) and undervoltage (UV) 113
- Running time (RNT) and Mains On time (ONT) 114
- Motor thermal overload (THM) 115
- Digital fault message output 116
Signalling relay terminals K11, K12, K14 117119
Setting the display parameters 120
Basic functions 121
- Input/display frequency value 121
- Acceleration time 1 121
- Deceleration time 1 122
- Direction of rotation 122
Setting the frequency and start signal parameters 123
- Definition of frequency setpoint value 123
- Start signal 123
- Base frequency 125
- Maximum end frequency 125
Voltage/frequency characteristic and voltage boost 126
- Boost 126
- Voltage/frequency characteristics 126
DC braking (DCB) 130
Operating frequency range 132
Acceleration pause 133
PID controller 134
- PID control 134
- Structure and parameters of the PID controller 137
- Example for setting K_{p} and T_{i} 143
- Application examples 144
Automatic voltage regulation (AVR) 146
Energy-saving mode 147
Time ramps 148
Acceleration and deceleration characteristics 149
Automatic restart after a fault 151
Electronic motor protection 154
- Tripping characteristics at increased overload protection 154
- Tripping characteristic at normal overload protection 155
- Tripping characteristic at adjustable overload protection 155
Current limit 157
Parameter protection 159
Controlled deceleration 160
6 Setting Parameters

	Other functions	162
	- Inhibit direction of rotation	162
	- Starting behaviour	162
	- Display mode	163
	- Pulse frequency	164
	- Initialization	165
	- Country version	165
	- Frequency factor for display through PNU d007	165
	- Inhibit of the OFF key	165
	- Motor restart after cancellation of the FRS signal	166
	- Controlling the built-in braking transistor	166
	- Type of motor stop	168
	- Fan control	168
	- Debug mode	168
	Controlling an external brake	169
	SLV and autotuning	171
	- SLV (sensorless vector control)	171
	- Autotuning	171
	PI controller	175
	User-defined parameters - parameter group U	176
7 Messages		177
	Fault messages	177
	- State of frequency inverter on fault message	177
	- Fault message display	177
	- Fault history register	178
	Other messages	180
	Warnings	181
8 Troubleshooting		183
Appendix		185
	Technical Data	185
	Weights and dimensions	193
	Cables and fuses	194
	Mains contactors	195
	Mains choke	196
	Radio interference filters	197
	Standard form for user defined parameter settings	199
Index		215

About this Manual

This manual describes the DV6 series frequency inverters.
This manual contains information you need to install, configure and operate the DV6 frequency inverters. The features, parameters and functions are described in detail, with examples for the most important applications. All information applies to the specified hardware and software versions.

Abbreviations and symbols

The following abbreviations and symbols are used in this manual:

EMC		Electro Magnetic Compatibility
	ESD	Electrostatic Discharge
HF	High Frequency	
IGBT	Insulated Gate Bipolar Transistor	
PES	Positive Earth connection of the cable screen	
PNU	Parameter Number	
WE	Radio-frequency interference (RFI)	

All measurements are in millimeters unless otherwise stated.
In some of the illustrations, the enclosure of the frequency inverter and other components affecting equipment safety have been omitted for improved clarity. However, the frequency inverter must always be operated with the enclosure and all necessary components that affect equipment safety correctly fitted.

Read the manual thoroughly before you install and operate the frequency inverter. We assume that you have a good knowledge of engineering fundamentals and that you are familiar with the electrical systems and the applicable principles and are able to read, interpret and apply the information contained in technical drawings.

- Indicates instructions to be followed

\rightarrow Indicates useful tips and additional information

Caution!

Warns of the possibility of minor material damage.

4

Warning!

Warns of the possibility of major material damage and minor injury.

Warning!

Warns of the possibility of major material damage and serious or fatal injury.

To improve legibility, the title of the current section is given at the top of each left-hand page and the current subsection at the top of each right-hand page, except on the title page of each section and the blank pages at the end of each section.

Changes					
Publication date	Page	Keyword	New	Change	Omitted
01/02	202	PNU A042 to A343, default setting		\checkmark	
	203	PNU A244, value 05			\checkmark
	203	PNU A344, values 02 to 05			\checkmark
	203	PNU A056 to A059, default setting	\checkmark		
	211	PNU A029 instead of A027 after PNU A028		\checkmark	
	212	PNU C087, gain, terminal AMI instead of AM		\checkmark	
	212	PNU C088, default setting		\checkmark	
	214 to 215	Parameter group H	\checkmark		
	215	Parameter group U	\checkmark		

1 About the DV6 frequency inverters

System overview

Figure 1: System overview
(1) DEX-DEY-10 external keypad
(2) Expansion module, for example for PROFIBUS-DP connection: DE6-NET-DP
(3) DV6 frequency inverters
(4) DE6-LZ... RFI filter
(5) Mains choke
(6) Braking resistor

Type code

Type codes and type designations of the DV6 frequency inverters:

Figure 2: Type codes of the DV6 frequency inverters

Example:

DV6-340-11K	The DV6 frequency inverters
	Three-phase mains supply voltage: 400 V
	Assigned motor rating: 11 kW at 400 V

Inspecting the package content

The DV6 frequency inverter has been carefully packaged and prepared for delivery. The device may be transported only in its original packaging with a suitable transport system (see weight details). Observe the instructions and the warnings on the side of the packaging. This also applies after the device is removed from the package.
Open the packaging with suitable tools and inspect the contents immediately on delivery to ensure that they are complete and undamaged. The package should contain the following items:

- one DV6 frequency inverter,
- Installation instructions, AWA8230-1938,
- one CD containing:
- this manual in PDF format and copies in other languages
- the parameterization software Hardware requirements: PC with Windows 95/98/ME/2000/ NT and the DEX-CBL-2M0-PC connecting cable

Figure 3: Package content
\rightarrow On the nameplate attached to the frequency inverter, check to ensure that the frequency inverter is the type which you have ordered.

Layout of the DV6

Figure 4: Physical features of the DV6
(1) Keypad
(7) Control signal terminals
(2) Fan
(8) Power terminals
(3) Heat sink
(9) Cable entry
(4) Interface connector for keypad
(10) Screw for opening the terminal shroud
(5) Two slots for optional modules
(11) Terminal shroud
(6) RS 485 interface
(12) Cover

Features of the frequency inverters

The DV6 frequency inverters convert the voltage and frequency of an existing three-phase supply to a DC voltage and use this voltage to generate a three-phase supply with adjustable voltage and frequency. This variable three-phase supply allows infinitlely adjustable speed control of three-phase asynchronous motors.

Figure 5: Function chart of the frequency inverter

(1) Supply through an interference suppressor
 Mains voltage ΔU_{LN} (EU-rated voltages):
 3-phase $400 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$

(2) The bridge rectifiers convert the AC voltage of the electrical supply to a DC voltage.
(3) The DC link contains a charging resistor, smoothing capacitor and switched-mode power supply unit. It enables coupling of the DC bus voltage and the $D C$ current supply:
DC bus voltage $\left(\Delta U_{\mathrm{ZK}}\right)=\sqrt{2} \times$ mains voltage $\left(\Delta U_{\mathrm{LN}}\right)$
(4) IGBT power inverter:

The power inverter converts the DC voltage of the internal DC link to a variable three-phase alternating voltage with variable frequency. In conjunction with an external braking resistor, the braking transistor allows braking of motors with a high moment of inertia or during extended regenerative operation.
(5) Output voltage $\left(\Delta U_{2}\right)$, motor connection:
three-phase, variable AC voltage, 0 to 100% of the input voltage ($\Delta U_{\text {LN }}$)
Output frequency (f_{2}):
variable frequency, 0 to 400 Hz
Output rated current ($I_{2 N}$):
2.5 to 260 A with about 1.5 times the starting current for 60 s , with a switching frequency of 5 kHz and at an ambient temperature of $40^{\circ} \mathrm{C}$
Motor connection, assigned shaft output $\left(P_{2}\right)$:
0.75 to 132 kW at 400 V
(6) Programmable control section with keypad and interface
\rightarrow If several motors are connected in parallel to the output of a frequency inverter, the motor currents are subject to vector addition, i.e. the active in-phase current and reactive current components are added separately. When you select a frequency inverter, make sure that it can supply the total resulting current.
\rightarrow If you connect a motor to an operational frequency inverter, the motor draws a multiple of its rated current. When you select a frequency inverter, make sure that the starting current plus the sum of the currents of the running motors will not exceed the rated output current of the frequency inverter.

The rated output current of the frequency inverter can be found in the technical data in the appendix from Page 187.

Intended use

The DV6 frequency inverters are not domestic appliances. They are designed only for industrial use as system components.

The DV6 frequency inverters are electrical apparatus for controlling variable speed drives with three-phase motors. They are designed for installation in machines or for use in combination with other components within a machine or system.

After installation in a machine, the frequency inverters must not be taken into operation until the associated machine has been confirmed to comply with the safety requirements of Machinery Safety Directive (MSD) 89/392/EEC and meets the requirements of EN 60204. The owner/operator of the equipment is responsible for ensuring that the machine is used in compliance with the relevant EU Directives.

The CE markings on the DV6 frequency inverter confirm that, when used in a typical drive configuration, the apparatus complies with the European Low Voltage Directive (LVD) and the EMC Directives (Directive 73/23/EEC, as amended by 93/68/EEC and Directive 89/ 336/EEC, as amended by 93/68/EEC).

In the described system configurations, DV6 frequency inverters are suitable for use in public and non-public networks. Depending on their location of use, additional, external filtering may be necessary.

Connection to IT networks (networks without a ground potential reference point) is not permitted as the devices internal filter capacitors connect the network to the ground potential (enclosure). On earth free networks, this can lead to dangerous situations or damage the device (isolation monitoring is required).
To the output of the frequency inverter (terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$) you may not:

- connect a voltage or capacitive loads (e.g. phase compensation capacitor),
- connect multiple frequency inverters in parallel,
- make a direct connection to the input (bypass).

Observe the technical data and terminal requirements. For additional information, refer to the equipment nameplate or label and the documentation.

Any other usage constitutes improper use.

Service and guarantee

In the unlikely event that you have a problem with your Moeller frequency inverter, please contact your local sales office.

Please have the following data and information about your frequency inverter to hand:

- Exact frequency inverter type designation (\rightarrow nameplate)
- Date of purchase
- Detailed description of the problem which has occurred with the frequency inverter

If some of the information printed on the nameplate is not legible, please state only the information which is clearly legible.
Information concerning the guarantee can be found in the Moeller General Terms and Conditions of Sale.

2 Engineering

This section describes the "Performance features of the DV6" and the requirements and directives concerning the following:

- Connecting to the mains
- EMC guidelines

Performance features of the DV6

Ambient temperatures	
Operation ${ }^{1)}$	$\mathrm{Ta}=-10$ to $+40^{\circ} \mathrm{C}$ at rated current I_{e} without derating, up to $+50^{\circ} \mathrm{C}$ at reduced pulse frequency of 2 kHz and output current reduced to $80 \% I_{e}$
Storage	$\mathrm{Ta}=-20$ to $+65^{\circ} \mathrm{C}$
Transport	$\mathrm{Ta}=-25$ to $+70^{\circ} \mathrm{C}$
Permissible environmental conditions	
Resistance to vibration	Impact and vibration: - DV6-340-007 to DV6-340-2K2: up to $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$ at 10 to 55 Hz - from DV6-340-4KO: up to $2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{~g})$ at 10 to 55 Hz
Degree of pollution	VDE 0110 Part 2, pollution degree 2
Packaging	Dust proof packaging (DIN 4180)
Climatic conditions	Class 3K3 according to EN 50178 (non-condensing, average relative humidity 20 to 90%)
Installation altitude	Up to 1000 m above sea level
Mounting position	Vertically suspended
Free surrounding areas	100 mm above and below device
Electrical data	
Emitted interference	IEC/EN 61800-3 (EN 55011 group 1, class B)
Noise immunity	IEC/EN 61800-3, industrial environment
Insulation resistance	Overvoltage category III according to VDE 0110
Leakage current to PE	Greater than 3.5 mA according to EN 50178
Degree of protection	IP20
Protection against direct contact	Finger and back-of-hand proof (VBG 4)
Protective isolation against switching circuitry	Safe isolation from the mains. Double basic isolation according to EN 50178
Protective measures	Overcurrent, earth fault, overvoltage, undervoltage, overload, overtemperature, electronic motor protec tion: $I^{2} t$ monitoring and PTC input (thermistor or temperature contacts)
Open-/closed-loop control	
Modulation method	Pulse width modulation (PWM), V/f characteristics control (linear, quadratic)
Switching frequency	5 kHz (default), adjustable from 0.5 to 15 kHz
Torque	At start $1.5 \times M_{N}$ for 60 s at assigned motor rating, every $600 \mathrm{~s}, 2 \times M_{\mathrm{N}}$ for 0.5 s
Output frequency	
Range	0.1 to 400 Hz
Frequency resolution	0.1 Hz , at digital setpoint, maximum frequency/1000 with analog setpoint value
Error limit at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	Digital setpoint definition ± 0.01 \% of the maximum frequency
	Analog setpoint definition ± 0.2 \% of the maximum frequency

Relay	
Changeover contact	- Contacts K11-K14 - 250 V AC, 2 A (resistive load) - 250 V AC, 0.2 A (inductive load, p.f. $=0.4$) - 100 V AC, minimum 10 mA - 30 V DC, 8 A (resistive load) $-30 \mathrm{VDC}, 0.6 \mathrm{~A}$ (inductive load, p.f. $=0.4$) - 5 V DC, minimum 100 mA - Contacts K11-K12 - $250 \mathrm{~V} \mathrm{AC}$,1 A (resistive load) $-250 \mathrm{VAC}, 0.2 \mathrm{~A}$ (inductive load, p.f. $=0.4$) - 100 V AC , minimum 10 mA - 30 V DC, 1 A (resistive load) $-30 \mathrm{VDC}, 0.2 \mathrm{~A}$ (inductive load, p.f. $=0.4$) - 5 V DC, minimum 100 mA
Internal voltages	
Control	24 V DC, maximum 30 mA
Setpoint definition	10 V DC, maximum 10 mA
Analog and digital actuation	
Analog inputs	- 1 input, 0 to 10 V , input impedance $10 \mathrm{k} \Omega$ - 1 input, 4 to 20 mA , load impedance 250Ω - 1 input, +10 to -10 V , input impedance $10 \mathrm{k} \Omega$
Digital inputs/outputs	8 inputs, user-configurable
	5 outputs, open collector (up to 27 V DC, 50 mA), user-configurable
Analog outputs	- 1 output for motor frequency or current, 10 V , up to 1.2 mA - 1 output, 0 to 10 V , up to 2 mA , user-configurable - 1 output, 4 to 20 mA , user-configurable
Keypad (built-in)	
Operation	6 function keys for controlling and parameterizing the DV6
Display	Four-digit, 7 -segment display and ten LEDs (for status signals)
Potentiometer	Setpoint definition (0 to 270 ${ }^{\circ}$)
1) If the frequency inverter is to be installed in a control panel, enclosure or similar installation, the temperature within the enclosure or control panel is considered to be ambient temperature T_{a}. The use of fans should be considered to ensure that the ambient temperature remains within permissible limits.	

Connecting to the mains

The DV6 frequency inverters can not be used in every network configuration without limitations (network configuration according to IEC 364-3).

Mains configurations

Networks with earthed centre point (TT/TN networks):

- DV6 frequency inverters can be used without limitations in TT and TN networks. The ratings of the DV6 frequency inverters must, however, be observed.

Networks with earthed centre point (IT networks):

- The use of DV6 frequency inverters in IT networks is only permissible to a limited extent. In this case, a suitable device (isolation monitor) to monitor earth faults and isolates the frequency inverter from the mains must be used.

Caution!

In the event of an earth fault in an IT system, the capacitors of the frequency inverter which are switched to earth are subjected to a very high voltage, and safe operation of the frequency inverter is no longer guaranteed. To overcome this problem, fit additional isolating transformer to the frequency inverter's supply and earth the transformer's secondary side at its centre point to form, in effect, an individual TN network for the frequency inverter.

Mains voltage, Mains frequency

The ratings of the DV6 frequency inverters cover European and American standard voltages:

- $400 \mathrm{~V}, 50 \mathrm{~Hz}$ (EU) and $460 \mathrm{~V}, 60 \mathrm{~Hz}$ (USA)

The permissible mains voltage range is:

- 380/480 V: $342 \mathrm{~V}-0 \%$ to $528 \mathrm{~V}+0 \%$

The permissible frequency range is $47 \mathrm{~Hz}-0 \%$ to $63 \mathrm{~Hz}+0 \%$.
The motor rating to mains voltage assignments are listed in the appendix, Section "Technical Data", Page 185.

Interaction with p.f. correction equipment

The DV6 frequency inverters absorb only a small fundamental reactive power from the AC supply. A p.f. correction is therefore not necessary.

Caution!

Operation of DV6 series frequency inverters on the mains with p.f. correction equipment is only permitted when this equipment is dampened with chokes.

Fuses and cable cross-sections

The fuse ratings and cable cross-sections required for the network connection depend on the rating of the frequency inverter and the the drive's operating mode.

Caution!

When selecting the cable cross-section, take the voltage drop under load conditions into account. Compliance to further standards (e.g. VDE 0113, VDE 0289) is the responsibility of the user.

The recommended fuses and their assignment to the DV6 frequency inverters are listed in the appendix, Section "Cables and fuses", Page 194.
The national and regional standards (e.g. VDE 0113, EN 60204) must be observed and any required approvals (e.g. UL) at the site of installation must be fulfilled.

When the device is operated in a UL-approved system, only UL-approved fuses, fuse bases and cables must be used.
The leakage currents to ground (according to EN 50178) are greater than 3.5 mA . The PE terminal and the enclosure must be connected to the earth-current circuit.

Caution!

The prescribed minimum cross-sections of PE conductors (EN 50178, VDE 0160) must be observed. Use a PE conductor whose cross-section is as least as large as the terminal capacity of the power terminals.

Protection of persons and domestic animals with residualcurrent protective devices

Residual-current circuit breakers (RCCBs; also called earth-leakage circuit breakers or ELCBs). Universal current sensitive RCCBs according to EN 50178 and IEC 755.

Identification on the residual-current circuit-breakers				
Logo	\sim	\sim	$\boxed{\sim--}$	\approx
Mode	Alternating	Pulse current	Universal current	
I	current sensitive	sensitive	sensitive (RCCB, Type AC) (RCCB, Type A)	(RCCB, Type B)

The frequency inverter has a built-in mains rectifier. When a frame fault occurs, a DC fault current can block the trip of the alternating current sensitive or pulse current sensitive residual-current circuit breaker, thereby preventing its protective function. We therefore recommend the use of:

- Universal RCCBs with a rated fault current $\geqq 300 \mathrm{~mA}$.

The approximate fault current values of the DV6 frequency inverters and their assigned radio interference filters are listed in the appendix, Section "Radio interference filters", Page 197.

Spurious tripping of a residual-current circuit breaker can be caused by the following:

- capacitive compensation currents in the cable screens, particularly with long, screened motor cables,
- simultaneous connection of multiple frequency inverters to the mains supply,
- the use of additional chokes and filters (radio interference filters, line filters).

∇ Caution!

Residual-current circuit breakers must be installed only on the primary side between the incoming supply and the frequency inverter.

Warning!

To prevent the risk of fire, use only cables, residualcurrent circuit breakers and contactors with the specified rating.

Mains contactor

The mains contactor is connected to the mains side input cables L1, L2, L3 and allows the DV6 frequency inverter on the supplying network to be switched on and off during operation and to be disconnected in the event of a fault.

Mains contactors and their assignment to the DV6 frequency inverters are listed in the appendix, Section "Mains contactors", Page 195.

Current peaks

In the following cases, a relatively high peak current can occur on the primary side of the frequency inverter (i.e. on the supply voltage side), which, under certain conditions, can destroy the input rectifier of the frequency inverter:

- Imbalance of the voltage supply greater than 3%.
- The maximum power output of the point of supply must be at least 10 times greater than the maximum frequency inverter rating.
- If sudden voltage dips in the supply voltage are to be expected, e.g. :
- a number of frequency inverters are operated on a common supply voltage
- a thyristor system and a frequency inverter are operated on a common supply voltage
- power factor correction devices are switched on or off

In these cases, a mains choke with about 3% voltage drop at rated operation should be installed.

Mains choke

The mains choke (also called commutating choke or line reactor) is connected to the mains side input cables L1, L2, L3. It reduces the harmonics and therefore reduces the apparent mains current by up to 30%.

A mains choke also limits any current peaks caused by potential dips (e.g. caused by p.f. correction equipment or earth faults) or switching operations on the mains.

The mains choke increases the lifespan of the internal DC link capacitors and therefore the lifespan of the frequency inverter. Its use is also recommended:

- with derating (temperatures above $+40^{\circ} \mathrm{C}$, sites of installation more than 1000 m above sea level),
- with parallel operation of multiple frequency inverters on a single mains supply point,
- with DC link coupling of multiple frequency inverters (interconnected operation).

Mains chokes and their assignment to the DV6 frequency inverters are listed in the appendix, Section "Mains choke", Page 196.

Mains filters and radio interference filters

Mains filters are a combination of mains chokes and radio interference filters in a single enclosure. They reduce the current harmonics and dampen high frequency radio interference levels.

Radio interference filters only dampen high frequency radio interference levels.

Caution!

The mains phase failure detection (PNU b006) does not operate correctly when a radio interference filter is installed.

Caution!

When line filters or radio interference filters are used, the leakage current to earth increases. Observe this point when installing residual-current circuit breakers.

EMC guidelines

The limit values for emitted interference and immunity for variable speed drives are described in the IEC/EN 61800-3 Product Standard.

If you use DV6 frequency inverters in European Union (EU) countries, you must observe the EMC Directive 89/336/EEC. The following conditions must be observed to comply with this Directive:

Supply voltage (mains voltage) for the frequency inverter:

- Voltage fluctuation $\pm 10 \%$ or less
- Voltage imbalance $\pm 3 \%$ or less
- Frequency variation $\pm 4 \%$ or less

If one of the conditions listed here cannot be fulfilled, you must install an appropriate mains choke (\rightarrow Section "Mains choke" in the appendix, Page 196).

EMC interference class

Installed according to the "EMC guidelines" in Kapitel „Installation", Page 21 and with the use of a radio interference filter, the DV6 frequency inverters conform to the following standards:

- Emitted interference:

IEC/EN 61800-3 (EN 55011 group 1, class B)

- Noise immunity:

EN 61800-3, industrial environment
With frequency inverters, performance related and emitted interference increases with the pulse frequency. The frequency at which performance-related interference occurs also increases with longer motor cables. When the assigned radio interference filter is used, the EN 61800-3 standard is complied to as follows:

| | Conformity
 General | Limited |
| :--- | :--- | :--- | :--- |
| First environment
 (public mains
 network) | Up to 10 m motor cable
 length at 15 kHz
 (maximum pulse
 frequency) | Up to $50 \mathrm{~m} \mathrm{~m}^{1)}$ |
| | Up to 20 m motor cable
 lengths with a switching
 frequency of up to 5 kHz | |
| Second environ-
 ment (industrial) | Up to 50 m | Up to 50 m |

1) This is a product with limited conformity as efined by IEC/ EN 61800-3. This product can cause radio-frequency interference in domestic environments. In this case appropriate protection measures must be implemented by the user.

Noise immunity

Used with the assigned radio interference filters, the DV6 frequency inverters meet the interference immunity requirements of the EMC Product Standard IEC/EN 61800-3 for industrial environments (second environment) and for domestic use (first environment).

A "domestic environment" is defined here as a connection point (transformer feeder) to which domestic households are also connected.

For industrial systems, the EMC Directive requires electromagnetic compatibility with the environment as a whole. The Product Standard regards a typical drive system as a complete unit, i.e. the combination of frequency inverter, cables and motor.

Emitted interference and radio interference suppression

 Used with the assigned radio interference filters, the DV6 frequency inverters meet the requirements of the EMC Product Standard IEC/EN 61800-3 for domestic use (first environment) and therefore also for the higher limit values of industrial environments (second environment).To ensure compliance to the limit values, observe the following points:

- Reduction of performance related interference with line filters and/or radio interference filters including mains chokes
- Reduction of the electromagnetic emission interference by screening motor cables and signal cables
- Compliance with installation requirements (EMC-compliant installation).

3 Installation

The DV6 frequency inverters should be installed in a control panel or in a metal enclosure (e.g. IP54).
\rightarrow During installation or assembly operations on the frequency inverter, all ventilation slots and openings should be covered to ensure that no foreign bodies can enter the device.

Installing the DV6

The DV6 frequency inverters must be mounted vertically on a nonflammable background.

Figure 7: Installation dimensions

Weights and dimensions of the DV6 are listed in the appendix in Section "Weights and dimensions", Page 193.

Mounting the DV6

Mount the DV6 frequency inverter as shown in Fig. 8 and tighten the screws to the following torque values (\rightarrow Table 1):

Figure 8: Mounting the DV6

Table 1: \quad Tightening torques of the fixing screws

$\begin{aligned} & \hline \varnothing \\ & {[\mathrm{mm}]} \end{aligned}$	(0)		
		Nm	ft lb
6	M5	4	3.0
7	M6	4.9	3.6
10	M8	8.8	6.5

The fixing screw sizes are listed in the table below:
Table 2: \quad Fixing screw sizes

DV6-340-...	a	b
075	130	241
1K5		
2K2		
4K0		
5K5		
11K	189	246
15K	229	376
18K5 220		
22K		
30K	265	510
37K	300	520
45K		
55K		
75K	300	510
90K		
110K	380	760
132K		

EMC compliance

EMC compliant installation

The frequency inverters operate with fast electronic switching devices e.g. transistors (IGBT). For this reason, radio interference can occur on the frequency inverter's output, which may effect other electronic devices in the direct vicinity, such as radio receivers or measurement instruments. To protect against this radio frequency interference (RFI), the devices should be screened and installed as far away as possible from the frequency inverters.

For an EMC-compliant installation, we recommend the following measures:

- Installation of the frequency inverter in a metallic, electrically conducting enclosure with a good connection to earth.
- Installation of a radio interference filter on the input of and immediately adjacent to the frequency inverter.
- Use of screened motor cables (short cable lengths).

Figure 9: DV6 and radio interference filters in an insulated metal enclosure
Z1: RFI filter
G1: Frequency inverter
(1) Screened motor cable

- Earth the metallic enclosure using a cable which is as short as possible (\rightarrow Fig. 9).

Using the radio interference filter

The RFI filter should be installed immediately adjacent to the frequency inverter. The connection cable between the frequency inverter and filter should be as short as possible. If cables are longer than 30 cm , use screened cables.

The mounting surfaces for the frequency inverter and radio interference filter should be as free as possible from paint and oil residue.

Up to size DV6-340-22K frequency inverters, the assigned DE6LZ... radio interference filters (\rightarrow Section "Radio interference filters", Page 197) are mounted underneath the inverter (footprint mounting).

Figure 10: Footprint mounting

With the DV6-340-30K to DV6-340-132K frequency inverters, fit the radio interference filters on the side next to the device (booktype mounting). You can fit the RFI filter either to the left or the right of the frequency inverter.

Figure 11: Book-type mounting (on right side in the example)

Radio interference filters produce leakage currents which, in the event of a fault (phase failure, load unbalance), can be larger than the rated values. To prevent dangerous voltages, the filters must therefore be earthed before use. As the leakage currents are highfrequency interference sources, the earthing connections and cables must have a low resistance and large contact surfaces.

Figure 12: Earthing measures
Z1: RFI filter
G1:Frequency inverter

With leakage currents $\geqq 3.5 \mathrm{~mA}$, VDE 0160 and EN 60335, one of the following conditions must be fulfilled:

- the protective conductor has a cross-section $\geqq 10 \mathrm{~mm}^{2}$,
- the protective conductor is monitored to ensure continuity, or
- an additional protective conductor is installed.

For DV6 frequency inverters, use the assigned DV6-LZ... filters.

EMC measures in the control panel

To ensure an EMC-compliant setup, connect all metallic components of the devices and of the control cabinet with each other using a large cross-section conductor with good HF conducting properties. Do not make connections to painted surfaces (Eloxal, yellow-passivized). If there is no alternative, use contact and scraper washers to ensure contact with the base metal. Connect mounting plates to each other, and the cabinet doors with the cabinet, using contacts with large surface areas and short HF wires.
An overview or all EMC measures can be seen in the following figure.

Figure 13: EMC-compliant setup

Fit additional RFI filters or mains filters and frequency inverters as closely as possible to each other and on a single metal mounting plate.
Lay cables in the control cabinet as near as possible to the earth potential. Cables that hang freely act as antennae.

To prevent transfer of electromagnetic energy, lay interferencesuppressed cables (e.g. the mains supply line before the filter) and signal lines as far away as possible (at least 10 cm) from HF-conducting cables (e.g. mains supply cable after a filter, motor power cable). This applies especially where cables are routed in parallel. Never use the same cable duct for interferencesuppressed and HF cables. Where crossovers are unavoidable, cables should always cross at right angles to each other.

Never lay control or signal cables in the same duct as power cables. Analog signal cables (for measured values, setpoints and correction values) must be screened.

Earthing

Connect the base plate (mounting plate) with the protective earth using a short cable. lay all conducting components (frequency inverter, mains filter, motor filter, mains choke) with an HF wire, and the protective conductor in a star configuration from a central earthing point. This achieves the best results.

Make sure that the earthing measures have been correctly implemented (\rightarrow Fig. 14). No other device which has to be earthed should be connected to the earthing terminal of the frequency inverter. If more than one frequency inverter is used, the earthing cables should not form a closed loop.

Figure 14: Star-type point-to-point earthing

Screening

Unscreened cables behave like antennae, i.e. they act as transmitters and receivers. To ensure EMC-compliant connection, screen all interference-emitting cables (frequency inverter/motor output) and interference-sensitive cables (analog setpoint and measured value cables).
The effectiveness of the cable screen depends on a good screen connection and a low screen impedance. Use only screens with tinned or nickel-plated copper braiding, braided steel screens are unsuitable. The screen braid must have an overlap ratio of at least 85 percent and an overlap angle of 90°.

Figure 15: Sample motor cable
(1) Copper screen braid
(2) PVC outer sheath
(3) Drain wire (copper)
(4) PVC core insulation
$3 \times$ black, $1 \times$ green/yellow
(5) Textile braid and PVC inner

The screened cable between frequency inverter and motor should be as short as possible. Connect the screen to earth at both ends of the cable using a connection with a large contact surface.
Lay the cables for the supply voltage separately from the signal cables and control cables.

Never unravel the screening or use pigtails to make a connection.

Figure 16: Inadmissible screen grounding (pigtails)

If contactors, maintenance switches, motor protection relays, motor chokes, filters or terminals are installed in the motor cabling, interrupt the screen near these components and connect it to the mounting plate (PES) using a connection with a large contact surface. The free, unscreened connecting cables should not be longer than about 100 mm .
Example: Maintenance switch

Figure 17: Maintenance switch, e.g. T... in an enclosure
(1) Metal plate
(2) Insulated PE terminal

In an EMC-compliant control cabinet (metal-enclosed, damped to about 10 dB), the motor cables do not need to be screened provided that the frequency inverter and motor cables are spatially separated from each other and arranged in a separate partition from the other control system components. The motor cable screening must then be connected with a large surface area connection at the control cabinet (PES).

The control cable and signal (analog setpoint and measured value) cable screens must be connected only at one cable end. The screen connection must have a large contact surface a low impedance. Digital signal cable screens must be connected at both cable ends, also with large-surface, low-resistance connections.

Electrical connection

This section describes how to connect the motor and the supply voltage to the power terminals, and the signal cables to the control terminals and the signalling relay.

Warning!

Carry out the wiring work only after the frequency inverter has been correctly mounted and secured. Otherwise, there is a danger of electrical shock or injury.

Warning!

Carry out wiring work only under zero voltage conditions.

Warning!

Use only cables, residual-current circuit breakers and contactors with a suitable rating. Otherwise there is a danger of fire.

The following illustration shows an overview of the connections.

Figure 18: Power connection
(1) Network configuration, mains voltage, mains frequency Interaction with p.f. correction systems
(2) Fuses and cable cross-sections
(3) Protection of persons and domestic animals with residual-current circuit breakers
(4) Mains contactor
(5) Mains choke, radio interference filter, line filter
(6) Mounting, installation

Power connection
EMC measures
Example of circuits
(7) Motor filter du/dt filter Sinusoidal filter
(8) Motor cables, cable length
(9) Motor connection

Parallel operation of multiple motors on a single frequency inverter
(10) Braking resistors, braking units

DC link coupling
DC supply

Connecting the power section

To connect the supply voltage, the motor cables and the signal relay terminals, open the front cover.
$\rightarrow \quad$ Complete the following steps with the specified tools and without the use of force.

Opening the terminal shroud - Loosen the screw.

Figure 19: Loosening the screw

- Pull the terminal shroud upwards to remove it.

Figure 20: View of the power and control signal terminals
(1) Power terminals
(2) Control signal terminals

Power terminal arrangement

Table 3: Description of the power terminals

Terminal designation	Function	Description		
L1, L2, L3	Supply voltage (mains voltage)	Three-phase mains voltage: Connection to L1, L2, L3		
U, V, W	Frequency inverter output	Connection of a three-phase motor		
L+, DC+	External DC choke	Normally, the terminals L+ and DC+ are fitted with a jumper. If a DC link choke is used, remove this jumper.		
DC+, DC-	DC link	These terminals are used for connecting an optional braking resistor and for DC linking and supplying $D C$ power to multiple frequency inverters.		
BR, DC+	External braking resistance	These terminals are used for connecting an optional external braking resistor.		
RO, T0	Control electronics supply voltage	The voltage supply for the control electronics is provided internally through connector J51 by tapping off L 1 and L 3 . The control electronics can also be supplied externally.		
(\%), PE	Earthing	Enclosure earthing (prevents dangerous voltages on the enclosure in the event of a malfunction)		

The arrangement of the power terminals is shown in the figure below.

(1) Internal connection. Remove if a DC link choke is used.

Power terminal connection

Warning!

Select a frequency inverter according to the available supply voltage (\rightarrow Section "Appendix", Page 185):

- DV6: Three-phase 400 V (342 to $528 \mathrm{~V} \pm 0 \%$)

Warning!

Never connect mains voltage to the output terminals U, V and W. Danger of electrical shock or fire.

Warning!

Each phase of the supply voltage for the frequency inverter must be protected with a fuse (danger of fire).

Warning!

Make sure that all power cables are correctly tightened in the power section.

Warning!

The frequency inverter must be earthed. Danger of electrical shock or fire.

Laying the cables

Lay the cables for the power section separately from the signal cables and control cables.

The connected motor cables must be screened. The maximum cable length must not exceed 50 m . With larger cable lengths, a motor choke is required for $\mathrm{du} / \mathrm{d} t$ limitation

If the cable leading from the frequency inverter to the motor is longer than about 10 m , the fitted thermal overload relays (bimetallic relays) may malfunction due to high frequency harmonics. Install a motor filter on the output of the frequency inverter in this case.

Tightening torques and conductor cross-sections

Warning!

To prevent inadvertent loosening, tighten the screws on the terminals sufficiently (\rightarrow Table 5).

- Tighten the cable connections according to Table 5.

Table 5: \quad Tightening torques and conductor cross-sections for the power terminals

Figure 21: Cable connection to the power terminals

Connecting the supply voltage

- Connect the supply voltage to the power terminals L1, L2, L3 and PE:

Connecting external supply voltage for the control electronics

If you also want to program the DV6 frequency inverter with the power supply switched off, connect an external power supply (L1 and L 3) to terminals RO and TO. Tis is done as follows:

R0, T0	$\sqrt{5 \pi}$	AWG		mm		$\begin{aligned} & \square \\ & \mathrm{Nm} \end{aligned}$	\dagger
DV6-340-...	1.5 to 2.5	16 to 14	8 to 10	9	M4	1.2 to 1.38	1

Remove the screws on terminals R0 and T0 and remove connector J51.

Figure 22: Remove the connection of J51 to R0 and T0

- Remove the ferrite rings from both cables.

Figure 23: Remove the ferrite rings

- Push the ferrite rings onto both of the external supply voltage cables (L1 and L3).

Figure 24: Push on the ferrite rings

- Screw on the cables of the external voltage supply to the terminals R0 and T0.

Figure 25: Connecting the external supply voltage

Connecting the motor cable

- Connect the motor cable to the U, V, W and PE terminals:

Figure 26: Power terminal connection
F1, Q1: Line protection
K1M: Mains contactor
L1: Mains choke
Z1: RFI filter
$\rightarrow \quad$ Observe the electrical connection data (rating data) on the rating label (nameplate) of the motor.

The stator winding of the motor can be connected in a star or delta configuration in accordance with the rating data on the nameplate.

Figure 27: Connection types

Figure 28: Example in motor star circuit

Figure 29: Example in motor delta circuit

Warning!

If motors are used whose insulation is not suitable for operation with frequency inverters, the motor may be destroyed.

If you use a motor filter or a sinusoidal filter here, the rate of voltage rise can be limited to values of about $500 \mathrm{~V} / \mu \mathrm{s}$ (DIN VDE 0530, IEC 2566).

By default, the DV6 frequency inverters have a clockwise rotation field. Clockwise rotation of the motor shaft is achieved by connecting the motor and frequency inverter terminals as follows:

Motor	DV6
U1	U
V1	V
W1	W

Figure 30: Direction of rotation, change of direction

With the DV6, the direction of rotation of the motor shaft can be reversed by:

- swapping two of the phase connections on the motor
- actuating terminal FW (clockwise) or 8 (default: REV = anticlockwise)
- applying a control command through the interface or fieldbus interface connection

The speed of a three-phase motor is determined by the number of pole pairs and the frequency. The output frequency of the DV6 frequency inverter is indefinitely variable from 0.1 to 400 Hz .

Pole-changing three-phase motors (Dahlander pole-changing motors), rotor-fed three-phase commutator shunt motors (slipring rotor) or reluctance motors, synchronous motors and servo motors can be connected, provided they are approved for use with frequency inverters by the motor manufacturer.

Warning!

The operation of a motor at speeds above its rated speed (indicated on nameplate) can cause mechanical damage to the motor (bearings, unbalance) and the machinery to which it is connected and can lead to dangerous operating conditions!

∇

Caution!

Uninterrupted operation in the lower frequency range (less than about 25 Hz) can lead to thermal damage (overheating) of self-ventilated motors. Possible countermeasures include over-dimensioning or external cooling independent of motor speed.
Observe the manufacturers recommendations for operating the motor.

Parallel connection of motors to a single frequency inverter

DV6 frequency inverters can control several parallel-connected motors. If the motors are to run at different speeds, this must be implemented through the number of connected pole pairs and/or the gear transmission ratio.

Figure 31: Parallel connection of multiple motors

Caution!

If a frequency inverter controls a number of motors in parallel, the contactors for the individual motors must be designed for AC-3 operation. Do not use the mains contactors listed in table in the appendix (Section "Mains contactors", Page 195). These mains contactors are designed only for the mains (primary) currents of the frequency inverter. If they are used in multiple-motor circuits, their contacts may weld.

Connecting motors inparallel reduces the load resistance at the frequency inverter output, reduces the total stator inductivity is and increases the leakage capacitance. As a result, the current distortion is larger than it is in a single-motor circuit. To reduce the current distortion, chokes or sinusoidal filters can be connected at the frequency inverter output.
\rightarrow The current consumption of all connected motors must not exceed the rated output current $I_{2 \mathrm{~N}}$ of the frequency inverter.

Electronic motor protection can not be used when operating the frequency inverter with a several connected motors. You must however, protect each motor with thermistors and/or overload relays.

If motors with widely differing ratings (for example 0.75 kW and 4.0 kW) are connected in parallel to the output of a frequency inverter, problems may arise during starting and at low speeds. Motors with a low rating may be unable to develop the required torque. This is due to the relatively high ohmic resistances of their stators. They require a higher voltage during the start phase and at low speeds.

Motor cable

To ensure electromagnetic compatibility, use only screened motor cables. The length of the motor cable and the associated use of further components has an influence on the motor control mode and the performance characteristics. In parallel operation (multiple motors connected to the frequency inverter output), the resulting cable lengths $l_{\text {res }}$ must be calculated:
$l_{\text {res }}=\Sigma l_{M} \times \sqrt{n}_{M}$
Σl_{M} : Sum of all motor cable lengths
n_{M} : Number of motor circuits
\rightarrow With long motor cables, the leakage currents caused by parasitic cable capacities can cause the "earth fault" message. In this case, motor filters must be used.

Keep the motor cables as short as possible as it will positively influence the drive's characteristics.

Motor choke, $\mathrm{d} u / \mathrm{d} t$ filters, sinusoidal filters

Motor chokes compensate for capacitive currents with long motor cables and with grouped drives (multiple connection of parallel drives to a single inverter).
The use of motor chokes is recommended (observe the manufacturers instructions):

- for grouped drives
- for the operation of three-phase current asynchronous motors with maximum frequencies greater than 200 Hz ,
- for the operation of reluctance motors or permanently excited synchronous motors with maximum frequencies above 120 Hz .
$\mathrm{du} / \mathrm{d} t$ filters are used for limiting the rate of voltage rise at the motor terminals to values below $500 \mathrm{~V} / \mu \mathrm{s}$. They should be applied for all motors with unknown or insufficient insulation withstand voltage.

Caution!

During the engineering phase, keep in mind that the voltage drop across motor filters and du/dt filters can be up to 4% of the frequency inverter's output voltage.

When sinusoidal filters are used, the motor supply voltage and current are almost sinusoidal.

Caution!

During the engineering phase, keep in mind that the sinusoidal filter must be matched to the output voltage and to the frequency inverter's pulse frequency.

The voltage drop on the sinusoidal filter can be up to 15% of the frequency inverter's output voltage.

Bypass operation

If you want to have the option of operating the motor with the frequency inverter or directly from the mains supply, the incoming supplies must be mechanically interlocked:

Caution!

A changeover between the frequency inverter and the mains supply must take place in a voltage-free state.

Warning!

The frequency inverter outputs ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) must not be connected to the mains voltage (destruction of the device, risk of fire).

Figure 32: Bypass motor control

Connecting the control signal terminals

The figure below shows the arrangement of the individual control signal terminals.

Figure 33: Location of the control signal terminals
(1) Control signal terminals

ESD measures

Discharge yourself on an earthed surface before touching the frequency inverter and its accessories.
This prevents damage to the devices through electrostatic discharge.

Function of the control signal terminals

Table 6: Meaning of the control signal terminals

No.	Function	Level	WE	Technical data, description
Supply voltages				
h	Setpoint voltage output	$+10 \mathrm{~V}=$	-	Supply voltage for external setpoint potentiometer. Load carrying capacity: 20 mA Reference potential: Terminal L
P24	Control voltage output	$+24 \mathrm{~V}=$	-	Supply voltage for actuation of digital inputs 1 to 8 and FW. Load carrying capacity: 100 mA Reference potential: Terminal CM1
Reference potentials				
CM1	Reference potential	0 V	-	Reference potential terminals 1 to 8 , FM, FW, TH and P24
CM2	External control voltage input	Up to 27 V	-	Connection: reference potential (0 V) of the external voltage source for the transistor outputs, terminals 11 to 15. Load carrying capacity: Up to 250 mA (sum of terminals 11 to 15)
L	Reference potential	0 V	-	Reference potential, terminals AM, AMI, H, O, Ol and 02
PLC	Common connection, terminals 1 to 8 and FW	By default, the frequenc PLC - and therefore on the control logic is posit	iverters are supplied with a link b digital inputs that are not energ	ween PLC and CM1, so that the potential on termina ed - is 0 V (negative logic). If PLC is applied to P24,
Digital inputs				
1	Digital input	$\begin{aligned} & \text { HIGH }=+12 \text { to }+27 \mathrm{~V} \\ & \text { LOW }=0 \text { to }+3 \mathrm{~V} \end{aligned}$	RST $=$ reset	PNP logic, configurable, $R_{\mathrm{i}}=4.7 \mathrm{k} \Omega$ Reference potential: Terminal CM1
2			AT = analog input changeover	
3			JOG = jog mode	
4			FRS = controller inhibit	
5			2CH = second parameter set	
6			FF2 $=$ fixed frequency 2	
7			FF1 = fixed frequency 1	
8			REV = anticlockwise operation	
FW	Digital input, clockwise operation		-	$R_{\mathrm{i}}=4.7 \mathrm{k} \Omega$ Reference potential: Terminal CM1
Analog inputs				
0	Analog input	0 to $+10 \mathrm{~V}=$	Frequency setpoint value (0 to 50 Hz)	$\begin{aligned} & R_{\mathrm{i}}=10 \mathrm{k} \Omega \\ & \text { Reference potential: Terminal L } \end{aligned}$
0 O	Analog input	4 to 20 mA	Frequency setpoint value (0 to 50 Hz)	$R_{\mathrm{B}}=250 \Omega$ Reference potential: Terminal L
02	Analog input frequency setpoint	-10 V to $+10 \mathrm{~V}=$	-	Resolution: 12 bit Input impedance: $10 \mathrm{k} \Omega$ Reference potential: Terminal L
TH	Thermistor input		-	Minimum thermistor rating: 100 mW Reference potential: Terminal CM1

No.	Function	Level	WE	Technical data, description
Digital outputs				
11	Transistor output	Up to $27 \mathrm{~V}=\mathrm{CM} 2$	Frequency setpoint reached	Configurable, open collector Load carrying capacity: Up to 50 mA
12			RUN (operation)	
13			Overload alarm	
14			Torque exceeded	
15			Intermittent mains failure	
Relay output				
K11	Programmable relay output		$\mathrm{AL}=$ fault message	Default settings: - Operating signal: K11-K14 closed.
K14			$\begin{array}{l\|l\|l\|} \hline 11 & \mathrm{~K} 14 & \mathrm{~K} 12 \\ \hline \end{array}$	closed Characteristics of the relay contacts: - K11-K14 - Maximum 250 V AC/2 A (resistive) or 0.2 A (inductive, p.f. $=0.4$); minimum $100 \mathrm{~V} \mathrm{AC} / 10 \mathrm{~mA}$ - Maximum 30 V DC/8 A (resistive) or 0.6 A (inductive, p.f. $=0.4$); minimum 5 V DC/100 mA - K11-K12 - Maximum 250 V AC/1 A (resistive) or 0.2 A (inductive, p.f. $=0.4$); minimum $100 \mathrm{~V} \mathrm{AC} / 10 \mathrm{~mA}$ - Maximum 30 V DC/1 A (resistive) or 0.6 A (inductive, p.f. $=0.4$); minimum 5 V DC/100 mA
Analog outputs				
AM	Voltage output	0 to $+10 \mathrm{~V}=-$	Frequency actual value	Resolution: 8 bit Load carrying capacity: 2 mA Reference potential: Terminal L
AMI	Current output	4 to 20 mA		$\begin{aligned} & \text { Resolution: } 8 \text { bit } \\ & R_{\mathrm{B}} \leqq 250 \Omega \\ & \text { Reference potential: Terminal L } \end{aligned}$
FM	Frequency output	0 to $+10 \mathrm{~V}=-$	Frequency actual value (0 to 50 Hz)	Configurable, monitored DC voltage; 10 V corresponds to set final frequency $(50 \mathrm{~Hz})$. Accuracy: $\pm 5 \%$ from final value Load carrying capacity: 1.2 mA Reference potential: Terminal CM1

Control signal terminal wiring

Wire the control signal terminals as appropriate for their application. For instructions for changing the function of the control signal terminals, \longrightarrow Kapitel „Programming the control signal terminals", Page 53.

Caution!

Never connect terminal P24 with terminals L, H, OI or FM.

Caution!

Never connect terminal H with terminal L.
Use twisted or screened cables for connecting to the control signal terminals. Earth the screen on one side with a large contact area connection near the frequency inverter. The cable length should not exceed 20 m . For longer cables, use a suitable signal amplifier.

Actuating the digital inputs

The DV6 has eight digital inputs, which are connected internally with terminal PLC. By default, power is supplied through the internal 24 V supply. For this purpose, terminals PLC and CM1 are connected with a jumper. If the digital inputs are to be supplied from an external source, remove this jumper.

The digital inputs can be operated both with positive (default setting) and with negative logic. To set it to negative logic, remove the jumper between terminals PLC and CM1 and connect terminals PLC and P24 with this jumper. If you are using an external power supply, you can connect the negative pole (positive logic) or the positive pole (negative logic) with terminal PLC.

The figure below shows a sample protective circuit for the control signal terminals

Figure 34: Control terminal connection (factory setting)

If a relay is connected to one of the digital outputs 11 to 15 or 12, connect a free-wheel diode in parallel to the relay to prevent destruction of the digital outputs through the self-induced e.m.f. which results when the relay is switched off.

Figure 35: Relay with free-wheel diode
\rightarrow Use relays that switch reliably at $24 \mathrm{~V}=$ and a current of about 3 mA .
$\rightarrow \quad$ Route the control and signal cables separately from the mains and motor cables.

Figure 36: Crossover of signal and power cables
(1) Power cable: $\mathrm{L} 1, \mathrm{~L}, \mathrm{~L}, \mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{L}+, \mathrm{DC}+, \mathrm{DC}-, \mathrm{RO}, \mathrm{TO}$
(2) Signal cables: H, O, OI, O2, L, FM, AM, AMI, 1 to 8,11 to $15, \mathrm{CM} 1$, CM2, P24, TH, K11, K12, K14

Example for the protective circuit of the digital inputs using the internal P24 supply voltage or a separate external 24 V power supply:

Figure 37: Actuating the digital inputs

Having made all cable connections, refit the terminal shroud on the frequency inverter and tighten the screw.

Figure 38: Close the terminal shroud

4 Operating the DV6

This section describes how to take the DV6 frequency inverter into operation and what you should observe during its operation.

Initial startup

Observe the following points before you take the frequency inverter into operation:

- Make sure that the power lines L1, L2 and L3 and the frequency inverter outputs U, V and W are connected correctly.
- The control lines must be connected correctly.
- The earth terminal must be connected correctly.
- Only the terminals marked as earthing terminals must be earthed.
- The frequency inverter must be installed vertically on a nonflammable surface (e.g. a metal surface).
- Remove any residue from wiring operations - such as pieces of wire - and all tools from the vicinity of the frequency inverter.
- Make sure that the cables connected to the output terminals are not short-circuited or connected to earth.
- Ensure that all terminal screws have been sufficiently tightened.
- Make sure that the frequency inverter and the motor are correct for the mains voltage.
- The configured maximum frequency must match the maximum operating frequency of the connected motor.
- Never operate the frequency inverter with opened power section covers.

Caution!

Do not carry out h.v. tests. Built-in overvoltage filters are fitted between the mains voltage terminals and earth, which could be destroyed.

Sparkover voltage and insulation resistance tests (megger tests) have been carried out by the manufacturer.

The control signal terminals are wired as follows.

Figure 39: Connecting the control signal terminals (default settings)

- Switch on the supply voltage.

The POWER and Hz LEDs light up (keypad). The display should indicate 0.0 . D .

- Close switch S1 (FW = clockwise operation).
- With potentiometer R1, you can set the frequency and therefore the motor speed.

The motor turns clockwise and the display indicates the set frequency.

- Open switch S1.

The motor speed is reduced to zero (display: $\mathbf{D a E D}_{\mathrm{a}}$).

- Close switch S2 (REV = anticlockwise operation).
- With potentiometer R1, you can set the frequency and therefore the motor speed.

The motor turns anticlockwise and the display indicates the set frequency.

- Open switch S2.

If both switches $S 1$ and $S 2$ are closed, the motor will not start. If you close both switches during operation, the motor speed is reduced to zero.

Caution!

During or after intitial operation, check the following points to prevent damage to the motor:

- Was the direction of rotation correct?
- Has a fault occurred during acceleration or deceleration?
- Was the frequency displayed correctly?
- Did any unusual motor noise or vibration occur?

If a fault has occurred due to overcurrent or overvoltage, increase the acceleration or deceleration time $(\rightarrow$ Section "Acceleration time 1", Page 121 and Section "Deceleration time 1", Page 122).
By default, the ON key and the potentiometer on the keypad $(\rightarrow$ Fig. 40 and \rightarrow Table 7) have no assigned function. For details about activating these devices, \rightarrow Section "Setting the frequency and start signal parameters", Page 123.

LCD keypad

The following illustration shows the LCD keypad of the DV6.

Figure 40: Keypad view
For an explanation of each of the elements, \rightarrow Table 7.

Table 7: Explanation of the operating and indication elements

Number	Name	Explanation
(1)	RUN LED	LED lights up in RUN mode if the frequency inverter is ready for operation or operational.
(2)	7 segment display	Display for frequency, motor current, fault messages, etc.
(3)	POWER LED	LED is lit when the frequency inverter has power.
(4)	LED Alarm	LED is lit when a fault has occurred.
(5)	LED Hz	Indication in (2): Output frequency (Hz)
(6), (7)	LED V, A, kW	Indication in (2): Either output voltage (V) or output current (A) or a combined current and voltage factor (kW)
(8)	LED \%	Indication in (2): Torque in \%
(9)	Potentiometer and LED	Frequency setpoint setting LED is lit when the potentiometer is activated.
(10)	ENTER key ENTER	This key is used for saving entered or changed parameters.
(11)	Arrow keys	Selecting functions, changing numeric values Increase Reduce
(12)	PRG key PRG	Selecting and exiting the programming mode.
(13)	OFF key 0	Stop the running motor and acknowledge a fault message. Active by default, also when actuation is through terminals.
(14)	On key and LED	Starts the motor in the specified direction (not active by default).
(15)	PRG LED	LED is lit during parameterization.

Operation with LCD keypad

The functions of the DV6 are organized in parameter groups. The following sections describe how to set the parameter values and how the setting menu is structured.

For a detailed description of the parameters, \rightarrow Kapitel „Setting Parameters", Page 119.

Menu overview

The following figure shows the sequence in which the parameters appear on the display. Table 8 provides a brief description of the parameters.

Figure 41: DV6 keypad menu structure
(1) The contents of this display depends on which display parameter (PNU d001 to d090) you have selected.

Table 8: Explanation of the parameters

Display	Explanation
Display parameter	
d001	Output frequency display
d002	Output current display
d003	Direction of rotation display
d004	PID feedback display
d005	Digital inputs 1 to 8 status
d006	Status of digital outputs 11 to 15
d007	Scaled output frequency
d012	Motor torque
d013	Output voltage
d014	Electrical input power
d016	Running time
d017	Mains On time
d080	Total fault count
d081	First (most recent) fault
d082	Second fault
d083	Third fault
d984	Fourth fault
d085	Fifth fault
d086	Sixth fault
de90	Warning
Basic parameters	
F001	Frequency setpoint adjustment
F002	Set acceleration time 1
F202	Set acceleration time 1 (second parameter set)
F302	Set acceleration time 1 (third parameter set)
F003	Set deceleration time 1
F203	Set deceleration time 1 (second parameter set)
F303	Set deceleration time 1 (third parameter set)
F004	Direction of rotation adjustment
Extended parameter groups	
A---	Extended functions group A
b---	Extended functions, group B
C---	Extended functions, group C
H---	Extended functions, group H
F---	Extended functions group P
บ---	Extended functions group U

For a detailed description of the parameters, \rightarrow Kapitel "Setting Parameters", Page 119.

Changing display and Basic parameters

Press the PRG key to switch from display or RUN mode to programming mode. The PRG lamp lights up in this mode.
You can access the individual parameters or parameter groups with the UP and DOWN arrow keys (\rightarrow Fig. 41).

To access the programming mode, press the PRG key. You can modify the parameter values with the arrow keys.
Exceptions are the display parameters PNU d001 to d090. These parameters have no values. After you have selected a display parameter with the arrow keys, you can return to the display mode with the PRG key. The display then shows the selected display parameter (\rightarrow Section "Setting the display parameters", Page 120).

Parameter values can be accepted with the ENTER key or rejected with the PRG key.
To return to the display mode, press the PRG key in the display parameter range PNU d001 to d090.

Example for changing acceleration time 1: PNU F002
The frequency inverter is in display mode and the RUN lamp is lit.

- Press the PRG key.

The frequency inverter changes to the programming mode, the PRG lamp lights up and d001 or the most recently modified parameter appears on the display.

- Press the DOWN key until F002 appears on the display.
- Press the PRG key.

The set acceleration time 1 in seconds appears on the display (default value: 30.00).

- To change the set value, use the UP and DOWN arrow keys.

There are now two possibilities:

- Accept the displayed value by pressing the ENTER key.
- Reject the displayed value by pressing the PRG key.

The display shows F002.

- Press the UP key until d001 appears.
- Press the PRG key.

The frequency inverter changes to the display mode and displays the set frequency.

Figure 42: Change acceleration time 1
(1) Display dependent on the selected display parameter PNU d001 to d090
(2) Display of the most recently changed parameter

Changing the parameters of the extended parameter groups

The following example illustrates how to change PNU A03 of the extended parameter group A. You can also change the parameter values of groups B, C, H, P and U as described in the example. For a detailed description of the extended parameter groups, see from Section "Setting the frequency and start signal parameters", Page 123.

Example for changing the base frequency PNU A003

- Press the PRG key to change to the programing mode.

The most recently modified parameter appears on the display and the PRG lamp lights up.

- Press the UP or DOWN key until the extended parameter group A---- appears on the display.
- Press the PRG key.

AD01 appears on the display.

- Press the UP key twice until ADOS appears on the display.
- Press the PRG key.

The display shows the value entered under PNU A003 (default: 50.).

- To change the value, use the UP and DOWN arrow keys.

There are now two possibilities:

- Accept the displayed value by pressing the ENTER key.
- Reject the displayed value by pressing the PRG key.

The display shows A00S.

- Press the UP key until dD01 appears.
- Press the PRG key.

The display shows $\hat{A}---$.

- Press the PRG key.

The frequency inverter changes to the display mode and displays the current frequency.

Figure 43: Change the base frequency (example with default setting)
(1) Display dependent on the selected display parameter PNU d001 to d090
(2) Display of the most recently changed parameter

Display after the supply voltage is applied

After the supply voltage is switched on, the last screen which was visible before switch off will reappear (but not within the extended parameter groups).

Connection examples

Operation using an external potentiometer

Figure 44: Connect an external potentiometer

Configuration of the parameters

PNU	Value	Function
a001	01	Setpoint definition through control signal terminal strip
a002	01	Start signal through FW(D)/REV terminals
F002	10	Acceleration time in s
F003	10	Deceleration time in s
-	-	FWD: Clockwise rotation on digital input FW
C008	01	REV: Start anticlockwise operation on digital input 8
$\mathrm{CO23}$	00	Indication of the output frequency (analog) through the measurement device connected to terminals L and FM
b081	80	Adjustment of the analog frequency display connected to terminals L and FM

Method of operation

You can start the frequency inverter in a clockwise direction with terminal FW and in an anticlockwise direction with terminal 8. If both terminals are closed simultaneously, a stop signal is issued.

With the externally connected potentiometer, the required frequency setpoint (voltage setpoint) can be defined.

You can use the measuring instrument to display the frequency (PNU C023 $=00$) or the motor current (PNU C023 = 01). With PNU b081, you can match analog output FM to the measuring instrument's measuring range (indication: frequency or current).

Operation through an analog setpoint value

Figure 45: Analog setpoint definition

Configuration of the parameters

PNU	Value	Function
A001	01	Setpoint definition through control signal terminal strip
A002	01	Start signal through FW(D)/REV terminals
F002	10	Acceleration time in s
F003	10	Deceleration time in s
-	-	FWD: Start clockwise operation on digital input FW
C008	01	REV: Start anticlockwise operation on digital input 8
C003	16	AT: Changeover to current setpoint value (4 to 20 mA)

Method of operation

Inputs FW and 8 function exactly as described in the previous example.

With digital input 3 (configured as AT), you can change over from a voltage setpoint value (0 to 10 V) to a current setpoint value (4 to 20 mA).

Instead of a fixed or switched connection on terminal 3, you can set PNU C013 to 01. Digital input 3 is then configured as a break contact (NC).
The circuit example also includes a motor PTC thermistor. It is important to use a screened control cable and to lay the motor PTC thermistor cable separately from the other motor cables. However, the screen should be earthed at the inverter side only.

Operation with fixed frequencies

Figure 46: Fixed frequency definition

Configuration of the parameters

PNU	Value	Function
a001	01	Setpoint definition through control signal terminal strip
a002	01	Start signal through FWD/REV terminals
F002	10	Acceleration time in s
F003	10	Deceleration time in s
-	-	FWD: Clockwise rotation on digital input FW
C008	01	REV: Start anticlockwise operation on digital input 8
C003	16	AT: Changeover to current setpoint value (4 to 20 mA)
C004	02	FF1: Fixed frequency input 1
C005	03	FF2: Fixed frequency input 2
C021	00	RUN output signal on terminal 11
C022	01	FA1 output signal on terminal 12
a021	f_{1}	The fixed frequency to be applied when FF1 is active and FF2 is inactive is entered here.
a022	f_{2}	The fixed frequency applied when FF1 is inactive and FF2 is active is entered here.
a023	f_{3}	The fixed frequency is applied when FF1 and FF2 are both active is entered here.

Method of operation

Inputs FW and 8 function exactly as described in the first example.
With the activation of one or both fixed frequency inputs FF1 and FF2, the current frequency setpoint applied to the motor is replaced by the fixed frequency determined by FF1 and FF2, and the motor brakes or accelerates according to the fixed frequency applied. If neither of the fixed frequency inputs FF1 and FF2 is activated, the frequency setpoint is determined through analog inputs O (voltage setpoint value) or Ol (current setpoint value). The wiring for these terminals is not shown in this circuit example. For the combination of the individual fixed frequency values, \rightarrow Section "Fixed frequency selection (FF1 to FF4)", Page 69.

The circuit example also contains the parameter settings for one output signal each at terminals 11 and 12.The output signal type is configured with PNU C021 for digital output 11 and with C022 for digital output 12.

Operational warnings

Warning!

If the supply voltage recovers after an intermittent failure, the motor may restart automatically if a start signal is still present. If personnel is endangered as a result, an external circuit must be provided which prevents a restart after voltage recovery.

Warning!

If the frequency inverter has been configured so that the stop signal is not issued through the OFF key on the LCD keypad, pressing the OFF key will not switch off the motor.

Warning!

Before carrying out maintenance and inspection work on the frequency inverter, wait at least five minutes after the supply voltage has been switched off. Failure to observe this point can result in electric shock due to high equipment voltages.

Warning!

Never pull on the cable to unplug connectors (e.g. for fan or circuit boards).

Warning!

If a reset is issued after a malfunction, the motor will start automatically if a start signal is also present. To avoid the risk of serious or fatal injury to personnel, you must ensure that the start signal is not present before acknowledging a fault message with a reset.

Warning!

When the supply voltage for the frequency inverter is applied while the start signal is active, the motor will start immediately. Make sure that the start signal is not active before the supply voltage is switched on.

Warning!

Do not connect cables or connectors during operation when the supply voltage is switched on.

Caution!

To prevent a risk of serious or fatal injury to personnel, never interrupt the operation of the motor by opening the contactors installed on the primary or secondary side.
$\rightarrow \quad$ The ON key is functional only if the corresponding parameters of the frequency inverter have been configured accordingly (\rightarrow Section "Setting the frequency and start signal parameters", Page 123).

Before operating motors at frequencies above the standard 50 or 60 Hz , contact their manufacturers to verify that the motors are suitable for operation at higher frequencies. The motors could otherwise incur damage.

5 Programming the control signal terminals

This section describes how to assign various functions to the control signal terminals.

Overview

Table 9 provides an overview of the control signal terminals and a brief description of the functions which you can assign to the programmable digital inputs and outputs. For a detailed description of each function, \rightarrow from Page 57.

Table 9: Description of the functions

Name	Value ${ }^{1)}$	Function	Description
Digital	uts 1 to 8		Parameterizing PNU C01 to C08
REV	01	Anticlockwise operation (start/stop)	 REV input closed: motor starts up in an anticlockwise direction. REV input open: controlled motor deceleration to stop (anticlockwise). FW(D) and REV inputs closed simultaneously: controlled motor deceleration to stop.
FF1	02	Programmable fixed frequencies 1 to 4	Example: Four fixed frequencies
FF2	03		
FF3	04		H 0 L 8 5 4 3 FW P24
FF4	05		For four fixed frequency stages (three programmable fixed frequencies and a setpoint value), two fixed frequency inputs ($3=$ FF1 and $4=F F 2$) are required $\left(2^{2}=4\right)$.
JOG	06	Jog mode	The jog mode, which is activated by switching on the JOG input, is used, for example, for setting up a machine in manual mode. When a start signal is received, the frequency programmed under PNU A38 is applied to the motor. Under PNU A39, you can select one of three different operating modes for stopping the motor.
DB	07	External brake	When the DB input is active, DC braking can be carried out.
SET	08	Selection of the second parameter set	Switching on SET allows you to select the second parameter set for setpoint frequency, torque boost, first and second acceleration/deceleration ramp and other functions. Parameters in the second parameter set are identified by a leading " 2 ", e.g. : PNU A201

Name	Value ${ }^{1)}$	Function	Description
2 CH	09	Second time ramp	Activates the second acceleration and deceleration time with PNU A92 and PNU A93 respectively
FRS	11	Controller inhibit (free run stop)	When FRS is switched on, the motor is immediately switched off and coasts to a stop.
EXT	12	External fault	When the EXT input is switched on, the fault signal activates PNU E12 and the motor switches off. The fault signal can be acknowledged, for example, with the RST input.
USP	13	Unattended start protection	When the USP input is switched on, unattended start protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present.
CS	14	Heavy mains starting	For starting drives with extremely high starting torques
SFT	15	Parameter protection	The parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters.
AT	16	Setpoint input 0 (4 to 20 mA) active	When the AT input is switched on, only setpoint value input OI (4 to 20 mA) is processed.
SET3	17	third parameter set	With the third parameter set, you can change the frequency inverter over to operate a third motor. Parameters in the third parameter set are identified by a leading " 3 ", e.g. : PNU A301
RST	18	Reset	To acknowledge a fault message, switch on the RST input. If a reset is initiated during operation, the motor will coast to a stop. The RST input is a make (NO) contact; it cannot be programmed as a break (NC) contact.
STA	20	Pulse start (3-wire)	These settings enable three-wire control of these three functions.
STP	21	Pulse stop (3-wire)	
F/R	22	Direction of rotation (3-wire)	
PID	23	Activation of PID control	Switching the internal PID controller on and off
PIDC	24	Resetting the integral component of the PID control	
CAS	26	Tacho-generator with vector control	When this input is activated, the speed controller operates with the values set under PNU HO7O, H071 and H072.
UP	27	Acceleration (motor potentiometer)	When input UP is switched on, the motor accelerates (available only if you have specified the frequency setpoint with PNU F001 or A020).
DWN	28	Deceleration (motor potentiometer)	When input DWN is switched on, the motor decelerates (available only if you have specified the frequency setpoint with PNU F001 or A020).
UDC	29	Reset frequency (motor potentiometer)	When the UDC input is switched on, the motor is controlled with the frequency set under PNU A020 (available only if you have specified the frequency setpoint with PNU F001 or A020).
OPE	31	Setpoint value through keypad	When this input is switched on, the frequency inverter operates with the frequency set at PNU F001.
$\begin{aligned} & \text { SF1 to } \\ & \text { SF7 } \end{aligned}$	32 to 38	Bitwise fixed frequency selection	Motor control using a fixed frequency.
OLR	39	Current limit changeover	Change over to further current limitation parameters: PNU b024, b025, b026 (default: PNU b021, b022, b023)
TL	40	Torque limitation active	Only with vector control
TRQ1	41	Torque limitation 1 active	Inputs TRQ1 and TRQ2 provide bitwise control of the torque limits for the four quadrants.
TRQ2	42	Torque limitation 2 active	
PPI	43	P or PI control	Only with vector control

Name	Value ${ }^{1}$	Function	Description
BOK	44	External brake enable signal confirmation	Confirmation of an external motor brake's Enable signal, for example on lifts, which the DV6 frequency inverter uses to monitor the brake's operating state.
ORT	45	Direction of rotation	Only with optional DE6-IOM-ENC module
LAC	46	Ramp function off	Only with optional DE6-IOM-ENC module
PCLR	47	Erase positioning deviations	Only with optional DE6-IOM-ENC module
STAT	48	Setpoint definition through module	Only with optional module
NO	no	-	No function
Non-programmable digital inputs			
FW	-	FWD = clockwise operation (start/stop)	Input FW(D) closed: motor starts up clockwise. Input FW(D) open: controlled motor deceleration from clockwise operation. FW(D) and REV inputs closed simultaneously: controlled motor deceleration to stop.
P24	-	$24 \mathrm{~V}=$ - for digital inputs	$24 \mathrm{~V}=$ potential for digital inputs 1 to 8
Frequency setpoint input			
h	-	10 V setpoint voltage for external potentiometer	R: 1 to $10 \mathrm{k} \Omega$ Resolution: 12-bit
0	-	Analog input for setpoint frequency through voltage signal (0 to $10 \mathrm{~V}=$ -	Input impedance: $10 \mathrm{k} \Omega$ $I \leqq 20 \mathrm{~mA}$ Resolution: 12-bit
02	-	Analog input for setpoint frequency through voltage signal $(-10 \text { to }+10 \mathrm{~V}=-)$	Input impedance: $10 \mathrm{k} \Omega$ $I \leqq 20 \mathrm{~mA}$ Resolution: 12-bit
Ol	-	Analog input for setpoint frequency through current signal (4 to 20 mA)	The Ol input for a setpoint value from 4 to 20 mA is used only when the digital input configured as the AT input is closed. Load resistor: 250Ω Resolution: 12-bit
L	-	0 V reference potential for setpoint inputs	If no digital input is configured as an AT input, the setpoint values O and Ol are added together.
Analog outputs			
FM	-	Frequency output	You can assign the following variables to outputs AM, AMI and FM:
AM	-	Voltage output (0 to $10 \mathrm{~V}, 8$-bit)	Output frequency, motor current, torque, output voltage, input power, ramp frequency and thermal load ratio
AMI	-	Current output (4 to $20 \mathrm{~mA}, 8$-bit)	
L	-	0 V	0 V reference potential for the analog output

Name	Value ${ }^{1)}$	Function	Description	
Programmable digital outputs 11 to 15				
RUN	00	RUN signal	The RUN signal is output during operation of the motor.	Connection of a signal
FA1	01	Signal when frequency is reached		relay to a digital output 11 to 15: Transistor output (open collector) (maximum $27 \mathrm{~V}=, 50 \mathrm{~mA}$)
			$f_{\text {s }}=$ setpoint frequency	
FA2	02	Signal when frequency is exceeded (1)	If a digital output is configured as FA1, a signal is issued as long as the setpoint value is reached. If a digital signal is configured as FA2, a signal is output as long as the frequencies defined under PNU C042 and PNU CO43 are exceeded.	
OL	03	Signal on overload	The OL signal is output when the overload alarm threshold (adjustable under PNU C041) is exceeded.	
OD	04	Signal on PID control deviation	The OD signal is output when the PID control deviation set under PNU C044 is exceeded.	
AL	05	Signal (alarm) on fault	The AL signal is issued when a fault occurs.	
FA3	06	Frequency reached (1)	The FA3 signal is issued when the output frequency lies in the frequency range defined under PNU CO42 and CO43 (plus tolerance),	
OTQ	7	Torque reached (exceeded)	The OTQ signal is output when the set torque is reached or exceed.	
IP	8	Mains failure, immediate stop	The IP signal is issued on intermittent mains failure.	
UV	9	Undervoltage signal	The UV signal is output on undervoltage.	
TRQ	10	Torque limitation	The TRQ signal is output when the torque limits set under PNU b041 to b044 are reached.	
RNT	11	Running time exceeded	The RNT signal is output when the running time set under PNU b034 is exceeded.	
ONT	12	Mains On time exceeded	The ONT signal is output when the running time set under PNU b034 is exceeded.	
THM	13	Motor thermal overload	The THM signal is output when the motor overload warning threshold set under PNU C061 is exceeded.	
BRK	19	Enable signal for external brake	The BRK signal is output to enable an external brake; adjustable under PNU b120 to b126.	
BER	20	Brake fault	The BER signal is output when the BOK input of the external brake is not deactivated; adjustable under PNU b120 to b126.	
ZS	21	Zero speed	The ZS signal is output when the motor is at rest (zero speed).	
DSE	22	Speed deviation exceeded	The DSE signal is output when the deviation of the actual speed from the setpoint value is greater than specified under PNU P027 (only with optional DE6-IOM-ENC module).	
POK	23	Positioning	The POK signal is output when positioning has been completed (only with optional DE6-IOM-ENC module).	

Name	Value ${ }^{1}$	Function	Description
FA4	24	Frequency exceeded (2)	The FA4 signal is output when the frequency rises above the value under PNU C045 or falls below the value under PNU C046.
FA5	25	Frequency reached (2)	The FA5 signal is output when the frequency set under PNU C045 or C046 is reached (hysteresis).
OL2	26	Overload alarm 2	The OL2 signal is output when the motor current exceeds the value set under PNU C111.
CM2	-	0 V	0 V reference potential for programmable digital outputs 11 to 15 . These are open collector outputs and are controlled through optocouplers. CM2 is isolated from reference potential L.
Signalling relay ${ }^{2}$			
K11	-	Signalling relay contacts	During normal fault-free operation, terminals K11-K14 are closed. If a malfunction occurs or the supply voltage is switched off, the terminals K11-K12 are closed. Maximum permissible values: - 250 V ~; maximum load 2.5 A (purely resistive) or 0.2 A (with a power factor of 0.4) - $30 \mathrm{~V}=$ - maximum load 3.0 A (purely resistive) or 0.7 A (with a power factor of 0.4) - Minimum required values: 100 V ~ at a load of 10 mA or $5 \mathrm{~V}=$ at a load of 100 mA
K14			

1) To activate the function, enter this value in the corresponding parameter.
2) This output can be used as both a signal output and a normal digital output.

Analog outputs - AM, AMI and FM

The analog outputs provide various physical variables, which you can select and some of which you can adjust to meet your specific needs. Terminals AM, AMI and FM are connected to chassis through terminal L.

Voltage output (AM)

The AM terminal provides the variables listed in the table below in the form of a 0 to 10 V voltage signal.

- In PNU CO28, specify the variable which the AM terminal is to provide.
- In PNU B080, specify the gain factor and in PNU C086 the offset.

PNU	Function	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b080	Gain, AM terminal	\checkmark	\checkmark	0 to 255	Gain of the voltage output	180
C028	Output, AM terminal	-	\checkmark	00	Output frequency: 0 Hz to end frequency PNU A004 $(\rightarrow$ Section "Maximum end frequency", Page 125)	00
				01	Output current: 0 to 200 \%	
				02	Torque: 0 to 200 \%	
				04	Output voltage: 0 to 100%	
				05	Inverter input power: 0 to 200 \%	
				06	Thermal load ratio: 0 to 100%	
				07	Ramp frequency: 0 Hz to end frequency PNU A004 $(\rightarrow$ Section "Maximum end frequency", Page 125)	
C086	Offset, AM terminal	\checkmark	\checkmark	0 to 10 V	Voltage increase	0.0

Current output (AMI)

The AMI terminal provides the variables listed in the table below in the form of a 4 to 20 mA current signal.

- In PNU C029, specify the variable which the AMI terminal is to provide.
- In PNU C087, specify the gain factor and in PNU C088 the offset.

| PNU | Function | Adjustable in RUN mode
 Normal
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C029 | Output, AMI
 terminal | - | \checkmark | 00 | Output frequency: 0 Hz to end frequency PNU A004
 (\rightarrow Section "Maximum end frequency", Page 125) | 00 |

Frequency output (FM)

The FM terminal provides the variables listed in the table below in the form of a pulse-width modulated (PWM) signal (\rightarrow Fig. 47). An exception is the output frequency to which the value " 03 " is assigned which is output as a frequency modulated (FM) signal (\rightarrow Fig. 49) .

- In PNU C027, specify the variable which the FM terminal is to provide.
- In PNU B081, specify the gain factor.

PNU	Function	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
C027	Output, FM terminal	-	\checkmark	00	Output frequency, PWM signal	00
				01	Output current	
				02	Torque: for SLV, 0 Hz SLV and vector control only	
				03	Output frequency: FM signal	
				04	Output voltage	
				05	Inverter input power	
				06	Thermal load ratio	
				07	Ramp frequency	
b081	Gain, FM terminal	\checkmark	\checkmark	0 to 255	Gain of the frequency output	60

PWM signal

The output signal is a square wave with a constant period of oscillation. Its pulse width is proportional to the current frequency value (0 to 10 V correspond to 0 Hz to the end frequency).

Figure 47: Connection of analog measuring instrument

If for example, a higher level of smoothing of the PWM signal is required for a motor current display, an external low-pass filter circuit is required.

Figure 48: Example for a low-pass circuit

FM signal

The frequency of this signal (PNU C027 = 00) changes proportionally to the output frequency. The pulse duty factor remains constant at about 50%. The output frequency at the FM terminal is ten times that of the DV6 frequency inverter's maximum output frequency, i.e. up to 4 kHz . This signal does not have to be matched; its accuracy is monitored digitally.

Figure 49: Digital frequency meter connection

Analog inputs, terminals 0, 02 and 01

You can specify the setpoint frequency through three analog inputs:

- Terminal 0: 0 to 10 V
- Terminal 02: -10 V to +10 V
- Terminal Ol: 4 to 20 mA

The reference potential for the analog inputs is terminal L .

Frequency setpoint definition

By default, the frequency setpoint is defined through voltage input $0(0$ to $+10 \mathrm{~V})$. Alternatively, you can enter the setpoint value through one of the other analog inputs or a combination of two analog inputs. To do this, you must configure a digital input with the AT function (\rightarrow Section "Analog input changeover (AT)", Page 73). The two inputs are specified under PNU A005 and A006.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A005	AT selection	-	-	00	Changing over from 0 to 01	00
				01	Changing over from 0 to 02	
A006	02 selection	-	-	00	02 signal only	00
				01	Sum of signals at 02 and 0 or Ol without direction reversal	
				02	Sum of signals at 02 and 0 or Ol with direction reversal	

The table below shows how you can link analog inputs 0, 02 and
OI with PNU A005 and A006.

Main frequency setpoint value input	02 signal sum	Reversal of direction with 02	AT input configured	A006	A005	Input AT
0	Yes	Yes	Yes	02	00	OFF
					01	
		No	Yes	01	00	OFF
					01	
	No	No	Yes	00	00	OFF
				00	01	
Add $0+01$	Yes	Yes	No	00	-	-
				02		
		No		01		
02	No	Yes	Yes	02	01	ON
				00		
		No		01		
01	Yes	Yes	Yes	02	00	ON
	Yes	No		01		
	No	No		00		

Matching of terminals 0, 02 and 01

With PNU C081 to C083 and PNU C121 to C123, you can adapt the analog setpoint signals at terminals 0,02 and Ol to your requirements:

- Terminal 0: 0 to +10 V
- Setpoint signal matching: PNU C081
- Zero point matching: PNU C121
- Terminal 02, -10 V to +10 V
- Setpoint signal matching: PNU C083
- Zero point matching: PNU C123
- Terminal OI: 4 to 20 mA
- Setpoint signal matching: PNU C082
- Zero point matching: PNU C122

Caution!

These parameters are not reset to their default values during initialization.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
C081	Matching of terminal 0	\checkmark	\checkmark	0 to 65530	Here, you can match the setpoint signal (0 to +10 V) supplied at analog input 0 with reference to the output frequency.	Depending on DV6
C082	Matching of terminal 0 I				Here, you can match the setpoint signal (4 to 20 mA) supplied at analog input Ol with reference to the output frequency.	
C083	Matching of terminal 02				Here, you can match the setpoint signal supplied at analog input $02(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$ with reference to the output frequency.	
C121	Zero-point matching, terminal 0			$\begin{aligned} & \hline 0 \text { to } 6553 \\ & (65530) \end{aligned}$	Here, you can match the setpoint signal (0 to +10 V) supplied at analog input 0 with reference to the zero point.	
C122	Zero-point matching, terminal Ol				Here, you can match the setpoint signal (4 to 20 mA) supplied at analog input Ol with reference to the zero point.	
C123	Zero-point matching, terminal 02				Here, you can match the setpoint signal (-10 V to +10 V) supplied at analog input 02 with reference to the zero point.	

Analog setpoint value matching

The external setpoint signal can be specifically matched with parametersPNU A011 to A016 and A101 to A114, which are described below. A configurable voltage or current setpoint range can be assigned to a configurable frequency range.

Furthermore, analog setpoint signal filtering can be adjusted using PNU A016.

Matching analog input 0

Figure 50 shows how to match the analog signal (0 to +10 V). With PNU A013 and A014, you specify the active voltage range. In PNU A011, you can set the starting point, and in PNU A012 the end point for the output frequency. If the line does not start at the origin, (PNU A011 and A013>0), specify the starting frequency with PNU A015. As long as the input signal is smaller than the value set in PNU A013, either 0 Hz (for PNU A015 $=00$) or PNU A011 (for PNU A015 $=01$) is output.

Figure 50: Setpoint matching, terminals 0-L

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A011	Starting frequency, input 0	-	\checkmark	$\begin{aligned} & 0.00 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Here, you define the starting frequency for the minimum setpoint voltage (PNU A013).	0.00
A012	End frequency, input 0	-	\checkmark	$\begin{aligned} & 0.00 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Here, you define the end frequency for the maximum setpoint voltage (PNU A014).	0.00
A013	Minimum setpoint voltage, input 0	-	\checkmark	0 to 100 \%	Minimum setpoint voltage as a percentage of the greatest possible voltage (+10 V).	0
A014	Maximum setpoint voltage, input 0	-	\checkmark	0 to 100%	Maximum setpoint voltage as a percentage of the greatest possible voltage (+10 V).	100
A015	Condition for starting frequency for analog input 0	-	\checkmark	Determines the behaviour at setpoint values below the minimum setpoint value.		01
				00	The frequency defined under PNU A011 is applied to the motor.	
				01	A frequency of 0 Hz is applied to the motor.	
A016	Analog input filter time constant	-	\checkmark	Averaging for attenuating any superimposed interference frequencies at analog inputs 0,02 or 01 . The value between 1 and 30 specifies the number of values to be averaged.		8
				1	Low filtering effect, fast response to setpoint value changes	
					
				30	Strong filtering effect, delayed response to setpoint value changes	

Matching analog input O

Figure 51 shows the matching possibilities for the 4 to 20 mA setpoint current. PNU A103 and A104 specify the active current range. In PNU A101, you can set the starting point, and in PNU A102 the end point for the output frequency. If the line does not start at the origin, (PNU A101 and A103 > 0), the starting frequency with PNU A105. As long as the input signal is smaller than the value entered under PNU A103, either 0 Hz (for PNU A105 $=00$) or PNU A101 (for PNU A105 = 01) is output.

Figure 51: Setpoint current, terminals OI-L

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A101	Starting frequency, input 01	-	\checkmark	$\begin{aligned} & 0.00 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Here, you define the starting frequency for the minimum setpoint current (PNU A103).	0.00
A102	End frequency, input 01	-	\checkmark	$\begin{aligned} & 0.00 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Here, you define the end frequency for the maximum setpoint current (PNU A104).	0.00
A103	Minimum current setpoint, input Ol	-	\checkmark	0 to 100%	Minimum setpoint value as a percentage of the highest possible current (20 mA).	20
A104	Maximum setpoint current, input OI	-	\checkmark	0 to 100%	Minimum setpoint value as a percentage of the highest possible setpoint current (20 mA).	100
A105	Condition for starting frequency for analog input 0	-	\checkmark	Determines the behaviour at setpoint values below the minimum setpoint value.		01
				00	The frequency defined under PNU A101 is applied to the motor.	
				01	A frequency of 0 Hz is applied to the motor.	

Matching analog input 02

Figure 52 shows the matching possibilities for setpoint voltages from -10 to +10 V .
The associated operating range is specified with PNU A113 and A114 for the voltage, and with PNU A111 and A112 for the frequency. At a zero value, the setpoint polarity, and therefore the direction of rotation, are reversed. If the input voltage falls below the value specified in PNU A113, the DV6 frequency inverter outputs the frequency specified in PNU A111; if the input voltage is higher than PNU A114, the DV6 outputs the frequency specified in PNU A112.

Figure 52: Setpoint matching, terminals 02-L

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A111	End frequency on direction reversal, input 02	-	\checkmark	$\begin{aligned} & -400 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Here, the end frequency that corresponds to the voltage setpoint value specified under PNU A113 is set.	0.00
A112	End frequency, input 02	-	\checkmark	$\begin{aligned} & -400 \text { to } \\ & 400 \mathrm{~Hz} \end{aligned}$	Here, the end frequency that corresponds to the voltage setpoint value specified under PNU A114.	0.00
A113	Maximum setpoint voltage at direction reversal, input 0 I	-	\checkmark	$\begin{aligned} & -100 \text { to } \\ & +100 \% \end{aligned}$	The minimum setpoint value entered here is a prcentage of the highest possible setpoint voltage (-10 V to +10 V).	-100
A114	Maximum setpoint voltage, input Ol	-	\checkmark	$\begin{aligned} & -100 \text { to } \\ & +100 \% \end{aligned}$	The maximum setpoint value entered here is a percentage of the highest possible setpoint voltage (-10 V to +10 V).	100

Programmable digital inputs 1 to 8

Various functions can be assigned to terminals 1 to 8 . Depending on your requirements, you can configure these terminals as follows:

- anticlockwise start signal (REV),
- selection inputs for various fixed frequencies (FF1 to FF4),
- reset input (RST),
- etc.

The terminal functions for programmable digital inputs 1 to 8 are configured with PNU C001 to C008, i.e. with PNU C001, you specify the function of digital input 1 , with PNU COO2 the function for digital input 2, etc. Note, however, that you cannot assign the same function to two inputs at the same time.

Programmable digital inputs 1 to 8 are configured by default as make contacts. If, therefore, you want to activate the function of an input terminal, you must close the corresponding input (i.e. connect the input terminal to terminal P24). Conversely, to deactivate the input terminal, the input must be opened.

Caution!

If an EEPROM error occurs (fault message $E \operatorname{DOE}$), all parameters must be checked to ensure that they are correct (particularly the RST input).

Table 10: Digital inputs 1 to 8
$\left.\begin{array}{llllll}\hline \text { PNU } & \text { Terminal } & \begin{array}{l}\text { Adjustable in RUN } \\ \text { mode } \\ \text { Normal }\end{array} & \text { Value } & \text { Wextend } \\ \text { ed }\end{array}\right]$

For a detailed description of the input functions, see the pages listed in Table 11.

Table 11: Functions of the digital inputs

Value	Function	Description	\rightarrow Page
01	REV	Start/stop anticlockwise operation	68
02	FF1	First fixed frequency input	69
03	FF2	Second fixed frequency input	
04	FF3	Third fixed frequency input	
05	FF4	Fourth fixed frequency input	
06	JOG	Jog mode	79
07	DB	DC braking	88
08	SET	Selection of the second parameter set	86
09	2 CH	Second acceleration and deceleration time	74
11	FRS	Motor shutdown and free run stop (coasting)	75
12	EXT	External fault	76
13	USP	Unattended start protection	77
14	CS	Heavy starting duty	91
15	SFT	Parameter protection	83
16	AT	Setpoint definition through current signal	73
17	SET3	Third parameter set	86
18	RST	Reset	78
20	STA	Pulse start (3-wire)	96
21	STP	Pulse stop (3-wire)	96
22	F/R	Direction of rotation (3-wire)	96
23	PID	Activation of PID control	-
24	PIDC	Reset integral component	-
26	CAS	Motor parameter changeover	-
27	UP	Acceleration (motor potentiometer)	84
28	DWN	Deceleration (motor potentiometer)	84
29	UDC	Reset frequency (motor potentiometer)	84
31	OPE	Setpoint value through keypad	93
32	SF1	Bitwise frequency selection	71
33	SF2		
34	SF3		
35	SF4		
36	SF5		
37	SF6		
38	SF7		
39	OLR	Current limit switch over	90

Value	Function	Description	\rightarrow Page
40	TL	Torque limitation active	94
41	TRQ1	Bitwise control of the torque	94
41	TRQ2		94
43	PPI	P or PI control	98
44	BOK	Confirmation of brake enable signal	100
45	ORT	Direction of rotation	-1)
46	LAC	Ramp function off	-1)
47	PCLR	Erase positioning deviation	-1)
48	STAT	Setpoint input through optional module	-2)
no	NO	No function	-

You can optionally configure the digital inputs as break (NC) contacts. To do this, enter 01 under PNU C011 to C018 (corresponding to digital inputs 1 to 8). An exception applies to the RST input (reset), which can only be operated as a make (NO) contact. FW is configured as a make (NO) contact under PNU C019.

∇ Caution!

If you reconfigure digital inputs configured as FW or REV as break contacts (the default setting is as a make contact), the motor starts immediately. They should not be reconfigured as break contacts unless this is unavoidable.

Table 12: Configuring digital inputs as break contacts

PNU	Terminal	Value	Adjustable in RUN mode		Function	WE
			Normal	Extended		
C011	1	00 or 01	-	\checkmark	00: Make contact 01: Break contact	00
C012	2					
C013	3					
C014	4					
C015	5					
C016	6					
C017	7					
C018	8					
C019	FW					

Start/stop

Clockwise rotation (FW)

When a digital input configured as FW is activated, the motor starts to run in a clockwise direction. When this input is deactivated, the motor is decelerated to a stop under frequency inverter control.

When the FW and REV inputs are activated simultaneously, the motor is decelerated to a stop under frequency inverter control.

Figure 53: Digital input FW (start/stop clockwise)

Anticlockwise rotation (REV)

When a digital input configured as REV is activated, the motor starts to run in an anticlockwise direction. When the input is deactivated, the motor is decelerated to a stop under frequency inverter control.

Figure 54: Digital input 8 configured as REV (start/stop anticlockwise)

Issue start signal

By default, the start signal is issued through the inputs configured as FW or REV. If however, the start signal is currently issued through the ON key on the keypad, enter the value 01 under PNU A002 (start signal through FW/REV input) (\rightarrow Section "Start signal", Page 123).

Program one of the digital inputs 1 to 8 as REV by entering the value 01 under the corresponding PNU (C001 to C008).

By default, REV is assigned to digital input 8.

Warning!

If the frequency inverter supply voltage is applied when the start signal is activated, the motor will start immediately. Make sure, therefore, that the start signal is not active before the supply voltage is switched on.

Warning!

If the FW/REV input is opened (inactive state if FW/REV is configured as a make contact) and then it is reconfigured as a break contact, the motor will start immediately after the reconfiguration.

Fixed frequency selection (FF1 to FF4)

With the digital inputs configured as FF1 to FF4, you can select up to 16 user-definable fixed frequencies (including frequency setpoints), depending on which of the inputs is active or inactive $(\rightarrow$ Table 13). It is not necessary to use all the fixed frequency selection inputs at the same time. Using only three inputs, for example, allows you to choose between eight fixed frequencies; with two fixed frequency selection inputs, four fixed frequencies are available for selection.

The fixed frequencies have a higher priority than all other setpoint values and can be accessed at any time through inputs FF1 to FF4 without needing to be enabled separately. Jog mode, to which the highest priority is assigned, is the only operation with a higher priority than the fixed frequencies.

Table 13: Fixed frequencies

Fixed frequency stage	PNU	Input FF4	FF3	FF2	FF1
$0=f_{s}$	Frequency setpoint value	0	0	0	0
f_{1}	a021	0	0	0	1
f_{2}	a022	0	0	1	0
f_{3}	a023	0	0	1	1
f_{4}	a024	0	1	0	0
f_{5}	a025	0	1	0	1
f_{6}	a026	0	1	1	0
f_{7}	a027	0	1	1	1
f_{8}	a028	1	0	0	0
f_{9}	a029	1	0	0	1
f_{10}	a030	1	0	1	0
f_{11}	a031	1	0	1	1
f_{12}	a032	1	1	0	0
f_{13}	a033	1	1	0	1
f_{14}	a034	1	1	1	0
f_{15}	a035	1	1	1	1

$0=$ input deactivated
1 = input activated

Figure 55: Digital inputs 1 to 4 configured as FF1 to FF4 (fixed frequency)

Figure 56: Function chart for FF1 to FF3 (fixed frequency control)

- Under PNU A019, enter the value 00 to activate the fixed frequencies FF1 to FF4.
- Program one or more of the digital inputs 1 to 8 as FF1 to FF4, by entering the values 02 (FF1) to 05 (FF4) under the corresponding PNU (C001 to C008).

By default, FF1 is preassigned to digital input 7 and FF2 to digital input 6.

The fixed frequencies can be programmed in two ways:

- by entering the fixed frequencies under PNU A021 to A035,
- by entering the fixed frequencies under PNU F001.

With PNU F001, you can change parameters even when the parameter protection (PNU b031) has been set (\rightarrow Page 83).
Entering the fixed frequencies under PNU A021 to A035

- Go to PNU A021 and press the PRG key.
- Use the arrow keys to enter the fixed frequency and confirm with the ENTER key.
- Enter the remaining fixed frequencies by repeating these steps for PNU A022 to A035.

Fixed frequency input under PNU F001

Before you can enter the frequencies under PNU F001, you must enter the value 02 in PNU A001.

- To select a fixed frequency stage, activate the digital inputs as listed in Table 13.
- Go to PNU F001.

The current frequency appears on the display.

- Use the arrow keys to enter the fixed frequency and confirm with the ENTER key.

The entered value is saved under the parameter which you have selected with the digital inputs (\rightarrow Table 13).

Repeat these steps for your additional fixed frequencies.

Specifying the frequency setpoint

The frequency setpoint can be assigned in one of three ways, depending on PNU A001:

- with the potentiometer on the keypad, PNU A001 $=00$;
- through analog input $0(0$ to 10 V$), 02(10 \mathrm{~V}$ to $+10 \mathrm{~V})$ or 01 (4 to 20 mA), PNU A001 = 01 (default);
- with PNU F001 or PNU A020, PNU A001 = 02 .

Selecting fixed frequencies

- Select the defined fixed frequencies by activating the respective digital inputs (\rightarrow Table 13).

Table 14: Fixed frequency parameters

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If one or more of the fixed frequencies exceeds 50 Hz , you must first increase the end frequency with PNU A (004 $(\rightarrow$ Section "Maximum end frequency", Page 125).

Fixed frequency stage 0 (none of the inputs FF1 to FF4 are activated) corresponds to the frequency setpoint value. Depending on the value entered in PNU A001, this can be defined with the installed potentiometer, the setpoint value inputs O and/or OI or through PNU F001 and PNU A020.

Bitwise fixed frequency selection (SF1 to SF7)

With the digital inputs configured as SF1 to SF7, you can directly access up to seven fixed frequencies. To do this, enter the value 01 under PNU A019 (fixed frequency drive method) and directly assign a fixed frequency to each of the digital inputs.

Figure 57: Digital inputs 1 to 7 configured as SF1 to SF7 (bitwise fixed frequency selection).

- Under PNU A019, enter the value 01 to activate the fixed frequencies SF1 to SF7.
- Program one or more of the digital inputs 1 to 8 as SF1 to SF7 by entering the following values under the corresponding PNU (C001 to C008):
- SF1: 32
- SF2: 33
- SF3: 34
- SF4: 35
- SF5: 36
- SF6: 37
- SF7: 38

The fixed frequencies can be programmed in two ways:

- entering the fixed frequencies under PNU A021 to A027 (see below),
- entering the fixed frequencies under PNU F001 (see below).

With PNU F001, you can change parameters even when the parameter protection PNU b031 has been set (\rightarrow Page 83).

Entering the fixed frequencies under PNU A021 to A027

- Go to PNU A021 and press the PRG key.
- Use the arrow keys to enter the fixed frequency and confirm with the ENTER key.
- Enter the remaining fixed frequencies by repeating these steps for PNU A022 to A027.

Entering the fixed frequencies in PNU F001

Before you can enter the frequencies under PNU F001, you must set the value 02 in PNU A001.

- To select a fixed frequency stage, activate the digital input as listed in Figure 57.
- Go to PNU F001.

The current frequency appears on the display.

- Use the arrow keys to enter the fixed frequency and confirm with the ENTER key.

The entered value is saved in the parameter which you have selected with the digital input. If you have wired the inputs as shown in Figure 57, the value is saved under PNU A021 when digital input 1 is activated.

- Repeat these steps for your additional fixed frequencies.

Specifying frequency setpoints

The setpoint frequency can be assigned in one of three ways, depending on PNU A001:

- through the installed potentiometer on the keypad, PNU A001 = 00;
- through analog input $0(0$ to 10 V$), 02(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$ or Ol (4 to 20 mA), PNU A001 = 01 (default);
- through PNU F001 or PNU A020, PNU A001 = 02.

Selecting fixed frequencies

- The set fixed frequency values are selected by activating the corresponding digital inputs (\rightarrow Fig. 2).

Figure 58: Function chart for SF1 to SF7 (bitwise fixed frequency selection)
f_{s} : Setpoint frequency

You do not have to use all seven inputs. You can, for example, set only one fixed frequency. The priority of the fixed frequencies is specified through the digital input. Fixed frequency SF1 has the highest, and SF7 die lowest priority (\rightarrow Fig. 2).

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Analog input changeover (AT)

When the digital input configured as AT is active, you can change over between analog inputs O and Ol or between O and O :

- 0: 0 to +10 V ,
- 02: -10 V to +10 V ,
- Ol: 4 to 20 mA .

Figure 59: Digital input 5 configured as AT (setpoint definition through current signal)

Under PNU A001, enter the setpoint frequency input method. At the default value of 01 , terminals 0,02 and OI are used for setpoint input.

- If it has not yet been correctly configured, set the PNU A001 to 01.

Under A005, specify whether activation of the AT input results in a changeover between O and Ol or between O and 02 .

- Program one of the digital inputs 1 to 8 as AT by entering the corresponding PNU (C001 to C008) to 16.

By default, AT is assigned to digital input 2.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A005	AT selection	-	-	00	Changing over from 0 to Ol	00
				01	Changing over from 0 to 02	
A006	02 selection	-	-	00	02 signal only	00
				01	Sum of signals at 02 and $0 / 01$ without direction reversal	
				02	Sum of signals at 02/0 or Ol with direction reversal	

The table below shows how you can link analog inputs 0, 02 and
Ol with PNU A005 and A006.

Main frequency setpoint value input	Input 02 as additive setpoint frequency input?	Reversal with 02?	Input AT present?	A006	A005	Input AT
0	Yes	Yes	Yes	02	00	Off
					01	
		No	Yes	01	00	Off
					01	
	No	No	Yes	00	00	Off
				00	01	
Add $0+01$	Yes	Yes	No	00	-	-
				02		
		No		01		
02	No	Yes	Yes	02	01	On
				00		
		No		01		
01	Yes	Yes	Yes	02	00	On
	Yes	No		01		
	No	No		00		

Second time ramp 2CH

If the digital input configured as 2 CH is active, the motor is accelerated or braked with the second acceleration or deceleration time. If the 2 CH input is deactivated again, a changeover to the first acceleration/deceleration time takes place.

Figure 60: Digital input 3 configured as 2 CH (second time ramp)

Figure 61: Function chart for 2 CH (second acceleration time)
f_{0} : Output frequency
(1) First acceleration time
(2) Second acceleration time

- Under PNU A092 and PNU A093, set the required value for the second acceleration and deceleration time.
- Then, set PNU A094 to 00 so that the changeover to the second acceleration and deceleration time through the 2 CH input is enabled (this is the default setting).
- Program one of the digital inputs 1 to 8 as 2 CH , by setting the corresponding PNU (C001 to C008) to 09.

By default, 2CH is assigned to digital input 5.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A092 } \\ & \text { A292 } \\ & \text { A392 } \end{aligned}$	Second acceleration time	\checkmark	\checkmark	0.01 to 3600 s	Setting times for the second acceleration and deceleration time	15
$\begin{aligned} & \hline \text { A093 } \\ & \text { A293 } \\ & \text { A393 } \end{aligned}$	Second deceleration time					
$\begin{aligned} & \hline \text { A094 } \\ & \text { A294 } \end{aligned}$	Changeover from the first to the second time ramp	-	-	00	Changeover to the second time ramp if an active signal is present at a 2 CH digital input.	00
				01	Changeover to the second time ramp when the frequencies entered in PNU A095 and/or A096 are reached	

\rightarrow If you set PNU A094 to 01, the changeover to the second acceleration or deceleration time can take place automatically at the frequency set under PNU A095 or A096 (\rightarrow Section "Time ramps", Page 148).
\rightarrow The value for the first acceleration and deceleration time is defined in PNU F001 and F002 $(\rightarrow$ Section "Acceleration time 1", Page 121).

Controller inhibit and coasting (free run stop - FRS)

If you activate the digital input configured as FRS, the motor is switched off and coasts to a stop (for example if an EmergencyStop is made). If you deactivate the FRS input, then, depending on the inverter's configuration, the frequency output is either synchronized to the current speed of the coasting motor or restarts at 0 Hz .

Figure 62: Configuration of digital input 3 as FRS ("free run stop",$=$ controller inhibit) and FW as FWD (start/stop clockwise operation)

Figure 63: Function chart for FRS (control inhibit and free run stop)
n_{M} :Motor speed
t_{w} : Waiting time (setting under PNU b03)
(1) Motor coasts to a stop
(2) Synchronization to the current motor speed
(3) Restart from 0 Hz

- Use PNU b088 to specify whether the motor is to restart at 0 Hz after the FRS input has been deactivated, or if synchronization should take place after a waiting time specified under PNU b003. The frequency inverter recognizes the speed of the rotor and starts only when the frequency set at PNU b007 is reached.
- Program one of the digital inputs 1 to 8 as FRS by entering the value 11 under the corresponding PNU (C001 to C008).

By default, FRS is assigned to digital input 4.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b003	Waiting time until restart	-	\checkmark	0.3 to 100 s	Here, set a time which is to expire before an automatic restart is initiated after a fault signal. This time can also be used in conjunction with the FRS function. During the delay, the following message appears on the LED display:	1.0
b007	Synchronization frequency	-	\checkmark	0 to 400 Hz	Frequency at which a restart is initiated.	0.00
b088	Motor restart after removal of the FRS signal	-	\checkmark	00	0 Hz restart after deactivation of the FRS input	00
				01	Synchronization of the motor to the frequency set under PNU 007 after the waiting time set under PNU b003.	

External fault message (EXT)

When the digital input configured as EXT is activated, fault message E12 is issued (for example to be used as input for thermistor contacts). The fault message remains active even if the EXT input is deactivated again and must be acknowledged with a reset.

A reset can be carried out with:

- the RST input or
- the OFF key.
- Alternatively, the supply voltage can be switched off and on again.

Figure 64: Digital input configured as FW (start/stop clockwise operation) and digital input 3 as EXT (external fault)

Figure 65: Function chart for EXT (external fault message)
n_{M} : Motor speed
K14: Signalling relay contact K 14 (if the signalling relay has been set to
13 (THM) under PNU CO26)
(1) Motor coasts to a stop

- Program one of the digital inputs 1 to 8 as EXT by entering the value 12 under the corresponding PNU (C001 to C008).

Warning!

After a reset, the motor restarts immediately if a start signal (FWD or REV) is active.

Unattended start protection USP

If the digital input configured as USP is activated, unattended start protection is also activated. This prevents a restart of the motor when the voltage recovers after a mains fault while a start signal (active signal on FWD or REV) is present. Fault message E13 is issued. E13 is cancelled by pressing the OFF key or with an active signal on the RST input. Alternatively, the start signal can be revoked.

Figure 66: Digital input configured as FWD (start/stop clockwise operation) and digital input 3 as USP (unattended start protection).

Figure 67: Function chart for USP (unattended start protection)
$\Delta U_{\mathrm{N}}:$ Supply voltage
K14: Signalling relay contact K14
f_{0} : Output frequency
(1) Revoke start signal (alarm no longer present)
(2) Start signal

- Program one of the digital inputs 1 to 8 as USP by setting the corresponding PNU (C001 to C008) to 13.

公

Warning!

If unattended start protection is triggered (fault message E13) and the fault message is acknowledged with a reset command while a start signal is still active (input FWD or REV active), the motor will restart immediately.
\rightarrow If you issue a start signal within three seconds of reestablishing the power supply and unattended start protection is active, the unattended start protection is also triggered and issues fault message E13. When unattended start protection is used, you should therefore wait for at least three seconds before issuing a start signal to the frequency inverter.
$\rightarrow \quad$ Unattended start protection can still be activated when you issue a reset command through the RST input after an undervoltage fault message (EO9) has occurred.

Reset (RST)

A fault message can be acknowledged by activating and subsequently deactivating (i.e. resetting) the digital input configured as RST.

Figure 68: Digital input 4 configured as RST (reset)

Figure 69: Function chart for RST (reset)
K14: Signalling relay contact K14

Program one of the digital inputs 1 to 8 as RST by entering the value 18 under the corresponding PNU (C001 to C008).

By default, RS is assigned to digital input 1.
Under PNU C103, you can select how the frequency inverter responds after the reset signal drops out. You can specify whether the frequency inverter synchronizes to the frequency set under PNU b007 or starts at 0 Hz .

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b003	Waiting time until restart	-	\checkmark	0.3 to 100 s	Here, set a time which is to expire before an automatic restart is initiated after a fault signal. This time can also be used in conjunction with the FRS function. During the delay, the following message appears on the LED display:	1.0
b007	Synchronization frequency	-	\checkmark	0 to 400 Hz	Frequency at which a restart is initiated.	0.0
C102	Reset signal	\checkmark	\checkmark	00	Reset signal issued on a rising edge	00
				01	Reset signal issued on a falling edge	
				02	Reset signal issued on a rising edge, only if fault signal present	
C103	Behaviour on reset	-	\checkmark	00	0 Hz start	00
				01	Synchronization to the motor speed	

Warning!

If a reset is carried out after a fault, the motor will start immediately if a start signal is applied simultaneously. To avoid the risk of serious or fatal injury to personnel, you must ensure that the start signal is not present before acknowledging an error message with a reset.
$\rightarrow \quad$ When a fault has occurred, the OFF key on the keypad acts as a RESET key, and can be used instead of the RST input to reset the fault.

If the RST input is active for more than four seconds, it can cause a false trip.

The RST input is always a make (NO) contact and cannot be programmed as a break (NC) contact.
$\rightarrow \quad$ Alternatively, you can acknowledge a fault message by briefly switching the supply voltage off and on again.
\rightarrow If a reset is initiated during operation, the motor coasts to a stop.

Jog mode (JOG)

When the digital input configured as JOG is activated, the motor can be operated in jog mode. This mode is used, for example, for manual setting up of a machine by issuing a start signal on the FW or REV input with a relatively low frequency without applying an acceleration ramp to the motor.

Figure 70: Digital input configured as FW (start/stop clockwise operation) and 3 as JOG (jog mode).

Figure 71: Function chart for JOG (jog mode)
n_{M} :Motor speed
(1) Depending on the setting of PNU A039

00: Free run stop (coast)
01: Deceleration ramp
02: DC braking

Input under PNU A038 the frequency which is to be applied to the motor when jog mode is active.

Make sure that the frequency is not too high, as it is applied directly to the motor without an acceleration ramp. This could cause a fault message. Set a frequency below about 5 Hz .

- Because the start signal in jog mode is issued through the FWDor REV input, PNU A002 must be set to 01.
- Under PNU A039, you determine how the motor is to be braked.
- Program one of the digital inputs 1 to 8 as JOG by entering the value 06 under the corresponding PNU (C001 to C008).

By default, JOG is assigned to digital input 3.

Caution!

Make sure that the motor has stopped before using jog mode.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A002	Start signal	-	-	01	The signal for starting the motor is issued through the digital inputs configured as FW or REV.	01
				02	The signal for starting the motor is issued with the ON key on the keypad.	
A038	Frequency in jog mode	\checkmark	\checkmark	0 to 9.99 Hz	The frequency to be applied to the motor in jog mode.	1.0
A039	Type of motor stop in jog mode	-	\checkmark	00	Stop signal active: the motor coasts to halt	00
				01	Stop signal active: the motor is decelerated to standstill using a deceleration ramp	
				02	Stop signal active: the motor is decelerated to standstill using DC braking	
				03	Jog mode without previous motor stop: the motor coasts to a halt	
				04	Jog mode without previous motor stop: the motor is decelerated to standstill using the deceleration ramp	
				05	Jog mode without previous motor stop: the motor is decelerated to standstill using DC braking	

$\rightarrow \quad$ Operation in jog mode is not possible when the jogging frequency set under PNU A038 is less than the start frequency set under PNU b082 \rightarrow Section "Run signal (RUN)", Page 104).
$\rightarrow \quad$ Jog mode can only be activated when the frequency inverter is in the Stop state if the values 00 to 02 have been set under PNU C039.

Change over vector parameters (CAS)

Activating the digital input configured as CAS causes a changeover between the PI control parameters. PI control regulates the speed and is available only in vector control mode (PNU A044) (\rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126):

- SLV control
- 0 Hz SLV control
- Vector control with optional DE6-IOM-ENC module

When the CAS input is inactive or no digital input is configured as CAS, the following paramaters apply:

- PNU H050 (H250),
- PNU H051 (H251),
- PNU H052 (H252).

When the CAS input is active, the following parameters apply:

- PNU H070,
- PNU H071,
- PNU H072.

Figure 72: Digital input 1 configured as REV (start/stop anticlockwise operation) and 2 as CAS (change over vector parameters).

CAS	PNU	Active
ひ	H050 (H250)	\checkmark
2 P24	H051 (H251)	\checkmark
$)^{1}$	H052 (H251)	\checkmark
	H070	-
	H071	-
	H072	-
尔	H050 (H250)	-
2 P24	H051 (H251)	-
	H052 (H251)	-
	H070	\checkmark
	H071	\checkmark
	H072	\checkmark

- To activate vector control, enter one of the following values under PNU A044 $(\rightarrow$ Section "Voltage/frequency characteristic and voltage boost", Page 126).
- 03: SLV control
- 04: 0 Hz SLV control
- 05: Vector control with optional DE6-IOM-ENC module.
- Program one of the digital inputs 1 to 8 as CAS by setting the corresponding PNU (C001 to C008) to 26.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A044 } \\ & \text { A244 } \\ & \text { A344 } \end{aligned}$	Voltage/frequency characteristic	-	-	00	$\Delta U / f$ characteristic, linear	00
				01	$\Delta U / f$ characteristic, quadratic, for example fans	
				02	User-definable	
				03	Sensorless vector control (SLV) ${ }^{1)}$	
				04	0 Hz SLV control1)	
				05	Vector control ${ }^{1)}$ with optional DE6-IOM-ENC module	
H005	Motor constants	\checkmark	\checkmark	0.001 to 65.53	Gain Kp	1.590
H050	Pl proportional gain	\checkmark	\checkmark	0.00 to 1000 \%	P component of he PI control in vector control mode	100.0
H051	PI Integration gain	\checkmark	\checkmark	0.00 to 1000 \%	I component of he PI control in vector control mode	100.0
H052	P proportional gain	\checkmark	\checkmark	0.01 to 10.00	P component of he P control in vector control mode	1.00
H070	Pl proportional gain	\checkmark	\checkmark	0.00 to 1000%	P component of he PI control in vector control mode	100.0
H071	PI Integration gain	\checkmark	\checkmark	0.00 to 1000 \%	I component of he PI control in vector control mode	100.0
H072	P proportional gain	\checkmark	\checkmark	0.01 to 10.00	P component of the P control in vector control mode	1.00

1) If SLV control is active, you should set the pulse frequency to at least 2.1 kHz with PNU b083 (\rightarrow Section "Pulse frequency", Page 164).

PTC/NTC thermistor input, terminal TH

You can monitor the motor temperature during operation using analog input TH in connection with CM1 (chassis). You can connect either a PTC or an NTC thermistor to this input. This is defined under PNU b098. Under PNU b099, enter the resistance at which rthe device is switched off.

Figure 73: Connection, terminal TH

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b098	PTC/NTC selection	-	\checkmark	00	No temperature monitoring	00
				01	PTC	
				02	NTC	
b099	Resistance threshold deactivation	-	\checkmark	0 to 9999Ω	When the entered value is reached, the input terminal is activated.	3000Ω
C085	Thermistor matching	\checkmark	\checkmark	0.0 to 1000	Scaling factor for input terminal TH .	105

- To connect a thermistor, use a twisted cable and lay this cable separately.

Software protection (SFT)

When you activate the digital input configured as SFT, the configured parameters cannot be overwritten unintentionally.

Figure 74: Digital input 3 configured as SFT (software protection)

- With PNU b031, specify whether software protection will also apply to the frequency setting under PNU F001.
- Then, program one of the digital inputs 1 to 8 as SFT by setting the corresponding PNU (C001 to C008) to 15.

Under PNU b031, you can specify whether you want to use the normal or extended parameter setting features in RUN mode. If you enter the value 10 under PNU b031, further parameters are available, which you can modify in RUN mode. These additional parameters are marked in the "Extended" column with a " $\sqrt{ }$ ".

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
b031	Software parameter protection	-	\checkmark	00	Software protection through SFT input; all functions inhibited	01
		01	Software protection through SFT input; input through PNU F001 possible			

\rightarrow There is, however, an alternative method of software protection available which does not require an SFT input. For this, enter the value 02 or 03 under PNU b031 depending on whether software protection should also apply to the frequency setting under PNU FOO1 or not.

Motor potentiometer functions: accelerate (UP) decelerate (DWN) - Reset frequency (UDC)

Accelerate (UP) and decelerate (DWN)

If you configure one of the programmable digital inputs as UP or DWN (or two programmable digital inputs as UP and DWN), an additional acceleration (with the UP input active) or deceleration (with the DWN input active) can be carried out, starting with the specified frequency setpoint.

Figure 75: Digital input FW configured as FWD (start/stop clockwise operation), 5 as UP (acceleration), 6 as DWN (deceleration) and 8 as REV (start/stop anticlockwise operation)

Figure 76: Function chart for UP/DWN (acceleration/deceleration motor potentiometer)
f_{0} : Output frequency

- Because the terminal functions UP and DWN can be used only when the frequency setpoint has been specified with PNU F001 or A020, you need to make sure that PNU A001 contains the value 02.
- Then, program one or two of the digital inputs 1 to 8 as UP or DWN by setting the corresponding PNU (C001 to C008) to 27 or 28.

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | | Value | Function | WE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The UP/DWN function is not available when jog mode has been activated (with active JOG input) or when the frequency setpoint definition is made through the analog input terminals.
The output frequency range for UP and DWN ranges from 0 Hz up to the end frequency specified under PNU A004 $(\rightarrow$ Section "Maximum end frequency", Page 125).
The shortest permissible duration during which an UP or DWN input must be active is 50 ms .
When the input configured as UP is used, the frequency setpoint in PNU A020 is also increased or, in the case of DWN, reduced (\rightarrow Abb. 2).

Reset frequency (UDC)

If you configure one of the programmable digital inputs as UDC, you can use this input to reset the frequency set with the motor potentiometer to 0 Hz . PNU A020 is then reset to 0 Hz .

- Program one of the digital inputs 1 to 8 as UDC by entering the value 29 under the corresponding PNU (C001 to C008).

Behaviour on restart

With PNU C101, you can specify whether the frequency defined with UP/DWN, or the original frequency entered under PNU A020 is used when the DV6 frequency inverter is restarted.

| PNU | Name | $\begin{array}{l}\text { Adjustable in RUN mode } \\ \text { Normal } \\ \end{array}$ | | | Extended |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$)$

Use second and third parameter set (SET/SET3)

When the digital input configured as SET/SET3 is active, the parameters from the second or third parameter set are used. This allows you to operate up to two additional motors with the same frequency inverter (although not at the same time) without having to reprogram the frequency inverter. The additional functions available in the second/third parameter set are listed in Table 15.

As soon as the SET/SET3 input is deactivated, the parameters of the default parameter set are used again.

Figure 77: Digital input FW configured as FWD (start/stop clockwise operation), digital input 5 as SET (use second parameter set) and 8 as REV (start/stop anticlockwise operation)

- Program one of the digital inputs 1 to 8 as SET by setting the corresponding PNU (C001 to C008) to 08.
- Program one of the digital inputs 1 to 8 as SET3 by setting the corresponding PNU (C001 to C008) to 17.

The motor must have come to a standstill before the SET/SET3 input is activated.

If the SET/SET3 input is deactivated while the motor is running, the parameters of the second/third parameter set are used until the motor is stationary again.

Table 15: Functions with second and third parameter set

Description of the function	Parameter number (PNU)		
	Default	Second parameter set	Third parameter set
First acceleration time	F002	F202	F302
First deceleration time	F003	F203	F303
Base frequency	A003	A203	A303
Maximum end frequency	A004	A204	A304
Frequency setpoint (PNU A001 must be 02 for this)	A020	A220	A320
Voltage boost characteristics	A041	A241	-
Percentage voltage increase with manual boost	A042	A242	A342
Maximum boost relative to the base frequency	A043	A243	A343
V/F characteristic	A044	A244	A344
Maximum operating frequency	A061	A261	-
Minimum operating frequency	A062	A262	-
Second acceleration time	A092	A292	A392
Second deceleration time	A093	A293	A393
Type of changeover from first to second time ramp	A094	A294	-
Changeover frequency for changeover from first to second acceleration time	A095	A295	-
Changeover frequency for changeover from first to second deceleration time	A096	A296	-
Tripping current for electronic motor protection device	b012	b212	b312
Characteristic for electronic motor protection device	b013	b213	b313

Description of the function	Parameter number (PNU)		
	Default	Second parameter set	Third parameter set
Motor data, standard/auto	H002	H202	-
Motor rating	H003	H203	-
Number of motor poles	H004	H204	-
Motor constant Kp	H005	H205	-
Motor stabilization constant	H006	H206	H306
Motor constant R_{1} (standard/autotuning)	H020/H030	H220/H230	-
Motor constant R_{2} (standard/autotuning)	H021/H031	H221/H231	-
Motor constant L (standard/autotuning)	H022/H032	H222/H232	-
Motor constant I_{0} (standard/autotuning)	H023/H033	H223/H233	-
Motor constant $/$ (standard/autotuning)	H024/H034	H224/H234	-
P component of the PI controller	H050	H250	-
I component of the PI controller	H051	H251	-
P component of the P controller	H052	H252	-
Magnetization current limitation, 0 Hz SLV control	H060	H260	-

Activate DC braking DB

DC braking can be activated either through a digital input configured as DB or automatically when a specific frequency is reached.

- Program one of the digital inputs 1 to 8 as DB by entering the value 07 under the corresponding PNU (C001 to C008).

- For automatic braking, enter 01 under PNU A051.
- Under PNU A052, enter the frequency at which DC braking is activated.
- Under PNU A053, enter the waiting time which is to expire after activation of the $D B$ input before $D C$ braking is activated.
- Under PNU A054, enter the braking torque between 0 and 100 \%.
- Under PNU A055, enter the braking duration.
- Under PNU A056, specify the braking behaviour when the DB input is active.
- Under PNU A057, enter the starting braking torque (0 to 100%) for braking the motor before acceleration.
- Under PNU A058, enter the duration for which DC braking is active before acceleration.
- Under PNU A059, set the pulse frequency (observe derating above 5 kHz) for DC braking.

Figure 78: Digital input FW configured as FWD (start/stop clockwise operation), 8 as REV (start/stop anticlockwise operation), and 5 as DB (DC braking)

Figure 79: Function chart for DB (DC braking)
f_{0} : Output frequency
(1) Start signal through keypad

- Program one of the digital inputs 1 to 8 as DB by entering the value 07 under the corresponding PNU (C001 to C008).
- Then, under PNU A053, enter a waiting time $t(\rightarrow$ Fig. 79) from 0 to 5.0 s , which is to expire after activation of the DB input before DC braking is activated.
- Under PNU A054, enter a braking torque between 0 and 100 \%.

Change over current limit (OLR)

The frequency inverter monitors the motor current during acceleration and/or static operation. When the inverter reaches the overload limit, the output frequency is reduced to limit the load. This prevents a shutdown due to overcurrent caused by an excessive moment of inertia or sudden changes in the load torque.

You can define two different overload behaviours:

- PNU b021 to b023 or
- PNU b024 to b026.

By default, the values of PNU b021 to b023 are used. To use PNU b024 to b026, activate the digital input configured as OLR (change over current limit) (\rightarrow Fig. 80 and Table 16).
Under PNU b021/b024, you can define the overload limit.

Figure 80: Digital input 3 configured as OLR (change over current limit)

OLR	PNU	Active
$\stackrel{\text { ¢ }}{ }$	b021	\checkmark
3 P24	b022	\checkmark
${ }^{1}$	b023	\checkmark
	b024	-
	b025	-
	b026	-
$\stackrel{\sim}{\square}$	b021	-
$\begin{array}{l\|l\|} \hline 3 & P 24 \\ \hline \end{array}$	b022	-
	b023	-
	b024	\checkmark
	b025	\checkmark
	b026	\checkmark

- Under PNU b021 to b023, define the overload behaviour for your first instance.
- Under PNU b024 to b026, define the overload behaviour for your second instance.
- Program one of the digital inputs 1 to 8 as OLR by entering the value 39 under the corresponding PNU (C001 to C008).

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \mathrm{b} 021 / \\ & \mathrm{b} 024 \end{aligned}$	Current limit characteristic	-	\checkmark	00	Motor current limit not active	01
				01	Motor current limitation active on acceleration and constant speed	
				02	Motor current limitation active at constant speed	
				03	Motor current limit active in all operating states	
$\begin{aligned} & \hline \text { b022l } \\ & \text { b025 } \end{aligned}$	Tripping current	-	\checkmark	0.5 to $2.0 \times I_{\text {e }}$	Setting range of the tripping current as a multiple of the frequency inverter rated current, i.e. the range is given in amperes (A).	$1.5 \times I_{\text {e }}$
$\begin{aligned} & \hline \text { b023/ } \\ & \text { b026 } \end{aligned}$	Time constant	-	\checkmark	0.1 to 30.0 s	When the set current limit is reached, the frequency is reduced to 0 Hz in the time set here. Caution: If possible, do not enter a value below 0.3 here!	1.00

Heavy mains starting (CS)

The CS function is used for starting drives with an extremely high starting torque directly from the mains. This means that a smaller less expensive frequency inverter can be used, since the DV6 has
to deliver only the motor full load current, not the high starting current (for example 50 A starting current, 15 A motor full load current).

To use this function, the system must be wired as shown in Figure 81.

Figure 81: DV6 series frequency inverters with K2M bypass contactor, K3M motor contactor and K1M mains contactor F11: 6 A miniature circuit-breaker, for example FAZ-B6

Actuation of the contactors consists of the following steps:

- The startup takes place through the K2M bypass contactor.
- Once the motor has accelerated, switch the K2M bypass contactor off and, with a delay (of 0.5 to 1.0 s), activate the K3M motor contactor.
- Then, switch the K1M mains contactor on and, at the same time, activate the digital input configured as CS.
- When the CS input is deactivated, the waiting time set under PNU b003 begins.
- Once this time has expired, the DV6 frequency inverter synchronizes to the motor speed and continues to run the motor.

Figure 82: Digital input configured FW as FWD (start/stop clockwise operation) and 3 as CS (heavy mains starting)

Figure 83: Function chart for CS (heavy mains starting)

- Program one of the digital inputs 1 to 8 as CS by entering the value 14 under the corresponding PNU (C001 to C008).

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b003 | Waiting time
 before restart | - | \checkmark | 0.3 to 100 s | Here, set a time which is to expire before an automatic
 restart is initiated after the supply voltage is connected. This
 time can also be used in conjunction with the FRS function.
 During the delay, the following message appears on the LED
 display: | 1.0 |

Setpoint value through keypad (OPE)

When you activate the digital input configured as OPE, an Enable signal must be issued with the ON key on the keypad. If, for example, you have entered the value 01 under PNU A001 (frequency setpoint input through analog input) and the value 01 under PNU A002 (start signal through digital input), these settings become invalid as soon as you activate the OPE input. PNU A002 then contain the value 02 (start signal through ON key) and the setpoint frequency under PNU A020 or PNU F001 becomes active. If you activate the OPE input while the inverter is in RUN mode, it decelerates and can then be started with the ON key on the device. If the start signal is still active, the frequency inverter accelerates to the previously set frequency again as soon as you deactivate the OPE input.

Figure 85: Function chart for OPE (setpoint definition through keypad)
f_{0} : Output frequency

- Program one of the digital inputs 1 to 8 as OPE by entering the value 31 under the corresponding PNU (C001 to C008).

Figure 84: Digital output 11 configured as OPE (setpoint definition through keypad)

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A001	Defined frequency setpoint	-	-	00	Definition with the potentiometer on the keypad	01
				01	Definition through analog input $0(0$ to 10 V$), 02(\pm 10 \mathrm{~V})$ or OI (4 to 20 mA)	
				02	Definition through PNU F001 and/or PNU A020	
				03	Definition through RS 485 serial interface	
				04	Setpoint definition through the optional module in slot 1	
				05	Setpoint definition through the optional module in slot 2	
A002	Start signal	-	-	01	The motor start signal is issued through the FW input or a digital input configured as REV.	01
				02	The motor start signal is issued by the ON key on the keypad.	
				03	The motor start signal is issued through the RS 485 interface.	
				04	The motor start signal is issued through the optional module in slot 1 .	
				05	The motor start signal is issued through the optional module in slot 2.	

Torque limitation (TL), torque selection (TRQ1 and TRQ2)

With the digital inputs configured as TL, TRQ1 and TRQ2, you can control the torque limitation. This function is based on the motor current limitation and is available only in vector control mode (PNU A044) (\rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126):

- SLV
- 0 Hz SLV
- Vector control with optional DE6-IOM-ENC module.

Under PNU b040, specify how the torque limits are defined.

TL - activate torque limitation

If you activate the digital input configured as TL , the torque limits under PNU b040 apply. Otherwise, the frequency inverter uses 200% as its upper limit.

If no digital input is configured as TL , the 200% upper limit also applies for torques.

TRQ1 and TRQ2 - bitwise selection of torque limits

With the digital inputs configured as TRQ1 and TRQ2, you can define the currently applicable torque limit PNU b041 to b044. To do this, enter the value 01 in PNU b040. The torque limit selected with TRQ1 and TRQ2 limit applies to all four quadrants.

TRQ1	TRQ2	Torque limit
On	Off	b041 (clockwise, drive mode)
On	Off	b042 (anticlockwise, regenerative mode)
On	On	b043 (anticlockwise, drive mode)
Off	On	b044 (clockwise, regenerative mode)

Figure 86: The four quadrants of a motor
n : Speed
M: Torque

Programming the digital inputs

Figure 87: Digital input 1 configured as REV (start/stop anticlockwise operation), 2 as TL (activate torque limitation), 3 and 4 as TRQ1 and TRQ2 (bitwise selection of torque limits).

- To activate vector control, enter one of the following values in PNU A044 $(\rightarrow$ Section "Voltage/frequency characteristic and voltage boost", Page 126).
- 03: SLV control
- 04: 0 Hz SLV control
- 05: Vector control with optional DE6-IOM-ENC module
- If you want to use TRQ1 and TRQ2, enter the value 01 under PNU b040.
- Program one of the digital inputs 1 to 8 as TL by setting the corresponding PNU (C001 to C008) to 40.
- Program one of the digital inputs 1 to 8 as TRQ1 by setting the corresponding PNU (C001 to C008) to 41.
- Program one of the digital inputs 1 to 8 as TRQ2 by setting the corresponding PNU (C001 to C008) to 42.

Figure 88: Function chart for torque limits

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A044 } \\ & \text { A244 } \\ & \text { A344 } \end{aligned}$	Voltage/ frequency characteristic	-	-	00	$\Delta U / f$ characteristic, linear	00
				01	$\Delta U / f$ characteristic, quadratic, for example fans	
				02	User-definable	
				03	Sensorless vector control (SLV) ${ }^{1)}$	
				04	0 Hz SLV 1)	
				05	Vector control ${ }^{1}$) with optional DE6-IOM-ENC module	
b040	Selection of torque limitation	-	\checkmark	00	Torque limitation in all four quadrants (PNU b041 to b044)	00
				01	Changeover of torque limits through digital inputs (TRQ1 and TRQ2)	
				02	Torque limit through analog input 0 (0 to 10 V)	
				03	Torque limit through optional module on slot 1	
				04	Torque limit through optional module on slot 2	
b041	Torque limit, first quadrant	-	\checkmark	0 to 200%	For DV6-340-075 to DV6-340-45K	150
				0 to 180%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b042	Torque limit, second quadrant	-	\checkmark	0 to 200%	For DV6-340-075 to DV6-340-45K	150
				0 to 180 \%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b043	Torque limit, third quadrant	-	\checkmark	0 to 200%	For DV6-340-075 to DV6-340-45K	150
				0 to 180%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b044	Torque limit, fourth quadrant	-	\checkmark	0 to 200 \%	For DV6-340-075 to DV6-340-45K	150
				0 to 180%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b045	Response on reaching the torque limit	-	\checkmark	00	Not active, waits until lower limit value exceeded before accelerating or decelerating	00
				01	Active, continues to accelerate or decelerate despite exceeded torque limit	
b046	Reverse rotation protection	-	\checkmark	00	Anticlockwise operation is allowed.	00
				01	Anticlockwise operation is not allowed.	

[^0]
Three-wire control (STA - STP - F/R)

With digital inputs configured as STA, STP and F/R, you can operate the DV6 frequency inverter with three switches:

- STA: Start
- STP: Stop
- F/R: Reverse direction

Figure 89: Digital input 1 configured as STA (pulse start), digital input 2 as STP (Pulse stop) and digital input 3 as F/R (reverse direction).

- Program three of digital inputs 1 to 8 as STA, STP and F/R, by entering the following values under the corresponding PNU (C001 to C008):
- STA: 20
- STP: 21
- F/R: 22

The DV6 frequency inverter accelerates to the setpoint frequency entered under PNU A020.

- Under PNU A001, enter the value 02 (setpoint definition through PNU A020).
- Under PNU A002, enter the value 01 (start signal through digital inputs).
- Under PNU A020, enter the setpoint frequency.

If you want to start the inverter through the STA input, the STP input must be activated (inverse function, fail-safe). The signal must be applied for only a short time (pulse). If the STP input is deactivated, the motor is stopped. If the F/R input (pulse) is activated, the motor direction is reversed.

Figure 90: Function chart for STA (pulse start) STP (pulse stop) and F/R (direction reversal)

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A001	Defined frequency setpoint	-	-	00	Definition with the potentiometer on the keypad	01
				01	Definition through analog input $0(0$ to 10 V , 0 Ol (4 to 20 mA) or $02(-10 \mathrm{~V}$ to $+10 \mathrm{~V}=-$)	
				02	Definition through PNU F001 and/or PNU A020	
				03	Definition through the RS 485 serial interface, terminals RP, $2 \times S N$ and SP	
				04	Definition through optional card at slot 1	
				05	Definition through optional card at slot 2	
A002	Start signal	-	-	01	The motor start signal is issued through digital inputs, for example through the FW input or a digital input configured as REV.	01
				02	The motor start signal is issued by the ON key on the keypad.	
				03	The motor start signal is issued through the RS 485 interface.	
				04	The motor start signal is issued through the optional module in slot 2.	
				05	The motor start signal is issued through the optional module in slot 2.	
$\begin{aligned} & \text { A020 } \\ & \text { A220 } \\ & \text { A320 } \end{aligned}$	Frequency setpoint value	\checkmark	\checkmark	0 to PNU A004	You can enter a frequency setpoint value. Set PNU A001 to 02 for this purpose.	0.0

Activating/deactivating PID control (PID) Resetting PID and integral component (PIDC)

The digital input configured as PID is used for activating and deactivating PID control. For a detailed description of the built-in PID controller, see Section "PID controller", Page 134. PID control can be activated and deactivated through the PID input only if PID control has been enabled by entering the value 1 under PNU A071 (\rightarrow Section "PID control active/inactive", Page 137). When the PID input is activated, PID control is deactivated and the frequency inverter works in "normal" frequency control mode.
The digital input configured as PIDC resets the integral component of the PID control. When this input is activated, the integral component is reset to zero.
$\rightarrow \quad$ The PID and PIDC inputs are optional. If you want to keep PID control permanently active, you only need to set PNU A071 to 1.

Do not switch PID control on and off while the frequency inverter is in RUN mode (i.e. while the RUN lamp is lit).

Do not reset the integral component of the PID control while the frequency inverter is in RUN mode (i.e. while the RUN lamp is lit), since this could cause overcurrent tripping.

Figure 91: Digital input FW configured as FWD (start/stop clockwise), 1 as PID (activate/deactivate PID control) and 2 as PIDC (reset integral component)

- Program one of the digital inputs 1 to 8 as PID by setting the corresponding PNU (C001 to C008) to 23.
- Program one of the digital inputs 1 to 8 as PIDC by setting the corresponding PNU (C001 to C008) to 24.

Changeover from PI to P control (PPI)

When you activate the digital input configured as PPI, a changeover from PI to P control takes place. The PI controller regulates the motor speed in vector control mode. This changeover is useful, for example, if you want to operate a dual-motor drive through two DV6 frequency inverters.

Figure 92: Drive with two motors and two frequency inverters

The first frequency inverter is then operated with PI control and the second with P control. The two frequency inverters are linked to each other through the analog current inputs and outputs. The frequency inverter with PI control outputs the current frequency through terminals AMI-L to the OI-L terminals of the second frequency inverter. The second frequency inverter works with P control.

Figure 93: Function chart for Pl and P control

Figure 94: Controlling two motors with two frequency inverters

The PI TO P control changeover function is available only in vector control mode (PNU A044) (\rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126):

- SLV
- 0 Hz SLV
- Vector control with optional DE6-IOM-ENC module.

- To activate vector control, enter one of the following values under PNU A044 \rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126).
- 03: SLV
- 04: 0 Hz SLV
- 05: Vector control with optional DE6-IOM-ENC module
- Program one of the digital inputs 1 to 8 as PPI by setting the corresponding PNU (C001 to C008) to 43.

Figure 95: Digital input 1 configured as REV (start/stop anticlockwise operation) and 2 as PPI (changeover PI to P control) .

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A044 } \\ & \text { A244 } \\ & \text { A344 } \end{aligned}$	Voltage/ frequency characteristic	-	-	00	$\Delta U / f$ characteristic, linear	00
				01	$\Delta U / f$ characteristic, quadratic, for example fans	
				02	User-definable	
				03	Sensorless vector control (SLV) ${ }^{1)}$	
				04	$0 \mathrm{~Hz} \mathrm{SLV} 1)$	
				05	Vector contro ${ }^{1}$) with optional DE6-IOM-ENC module	

1) If SLV control is active, set the pulse frequency to at least 2.1 kHz with PNU b083 (\rightarrow Section "Pulse frequency", Page 164).

Brake enable confirmation (BOK)

The digital input configured as BOK is used for monitoring an external brake, which is needed where heavy loads are to be lifted, such as for lift and crane controllers. When an external brake is employed, you should use the SLV (sensorless vector) or 0 Hz SLV control mode, which can provide a higher torque (\rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126).
The BOK input of the DV6 is activated by the Enable signal of an external brake as long as the external brake is released.

Figure 96: Digital input FW configured as FWD (start/stop clockwise operation), 1 as BOK (confirm brake enable) and 8 as REV (start/stop anticlockwise operation)

[^1]

Figure 97: Brake control function chart

- Program one of the digital inputs 1 to 8 as BOK by setting the corresponding PNU (C001 to C008) to 44.

For detailed description of the extended parameter groups,
\rightarrow Section "Controlling an external brake", Page 169.

Programmable digital outputs 11 to 15

Programmable digital outputs 11 to 15 are open collector transistor outputs (\rightarrow Fig. 98), to which you can connect, for example, relays. These outputs can be used for various functions, for example to signal when a determined frequency setpoint is reached or when a fault occurs.

Figure 98: Digital output
Transistor output: up to $27 \mathrm{~V}=-250 \mathrm{~mA}$

The terminal functions for programmable digital outputs 11 to 15 are configured under PNU C021 to C025 respectively, i.e. PNU C021 defines the function of digital output 11, PNU C022 the function of digital output 12, etc.

Table 17: Digital outputs 11 to 15

PNU	Terminal	Adjustable in RUN mode		Value	WE
		Normal	Extended		
C021	11	-	\checkmark	\rightarrow Table 18	01
C022	12				00
C023	13				03
C024	14				07
C025	15				08

For a detailed description of the output functions, see the pages listed in Table 18.

Table 18: Functions of the digital outputs

Value	Function	Description	\rightarrow Page
00	RUN	Operation	104
01	FA1	Frequency setpoint reached	102
02	FA2	Frequency exceeded	102
03	OL	Overload signal	105
04	OD	PID control deviation exceeded	106
05	AL	Fault	107
06	FA3	Frequency (within range) reached	102
07	OTQ	Torque reached (exceeded)	110
08	IP	Mains failure, immediate stop	113

Value	Function	Description	\rightarrow Page
09	UV	Undervoltage signal	113
10	TRQ	Torque limitation	111
11	RNT	Running time exceeded	114
12	ONT	Mains On time exceeded	114
13	THM	Motor thermal overload	115
19	BRK	Release brake	108
20	BER	Brake fault	108
21	ZS	Zero speed	109
22	DSE	Speed deviation exceeded	-1)
23	POK	Positioning	-1)
24	FA4	Frequency exceeded	102
25	FA5	Frequency setpoint reached	102
26	OL2	Overload signal 2	105

Programmable digital outputs 11 to 15 are configured by default as make contacts.
Optionally, you can configure the digital outputs as break (NC) contacts. To do this, enter 01 under PNU C031 to C35 (corresponding to digital outputs 11 to 15).

Table 19: Configuration of digital outputs as make contacts

PNU	Terminal	Value	Adjustable in RUN mode		Function	WE
			Normal	Extended		
C031	11	$\begin{aligned} & 00 \text { or } \\ & 01 \end{aligned}$	-	\checkmark	00: Make contact 01: Break contact	00
C032	12					
C033	13					
C034	14					
C035	15					

Frequency arrival signal FA1/FA2/FA3/FA4/FA5

The digital output configured as FA1 is activated as soon as the setpoint frequency is reached (\rightarrow Fig. 99).
The digital output configured as FA2 is active while the frequencies defined under PNU C042 and C043 are exceeded
$(\rightarrow$ Fig. 101).
The digital output configured as FA3 is activated when the frequency defined under PNU C042 is reached during acceleration. As soon as this frequency is left, FA3 is deactivated again. During deceleration, FA3 responds in the same way at the frequency set under PNU C043 $(\rightarrow$ Fig. 102).

The digital output configured as FA4 is active while the frequencies defined under PNU C045 and C046 are exceeded (\rightarrow Fig. 101).
The digital output configured as FA5 is activated when the frequency defined under PNU C045 is reached during acceleration. As soon as this frequency is left, FA3 is deactivated again. During deceleration, FA3 responds in the same way at the frequency set under PNU CO46 (\rightarrow Fig. 102).
To achieve a certain hysteresis, signals FA1 to FA5 are each activated with f_{1} before the switching threshold is reached and deactivated again with f_{2} on leaving the switching threshold. f_{1} and f_{2} are:

- $f_{1}=1 \%$ of the end frequency (PNU A004, A204, A304)
- $f_{2}=2 \%$ of the end frequency (PNU A004, A204, A304)

Figure 99: Function chart for FA1 (frequency reached)
f_{0} : Output frequency
f_{1} : $\quad 1 \%$ of the end frequency (PNU A004, A204, A304)
f_{2} : $\quad 2 \%$ of the end frequency (PNU A004, A204, A304)
F001: Setpoint value

Figure 100: Digital output 11 configured as FA1/FA2 (frequency reached/exceeded)

Figure 101: Function chart for FA2 (frequency exceeded)/FA4
f_{0} : Output frequency
$f_{1}: 1 \%$ of the end frequency (PNU A004, A204, A304)
$f_{2}: 2 \%$ of the end frequency (PNU A004, A204, A304)

Figure 102: Function chart for FA3 (frequency reached)/FA5
f_{0} : Output frequency
$f_{1}: 1 \%$ of the end frequency (PNU A004, A204, A304)
$f_{2}: 2 \%$ of the end frequency (PNU A004, A204, A304)

- To configure a programmable output as FA2, set the frequency under PNU C042, at which the FA2 signal is to be generated in the acceleration phase.
- With PNU C043, set the respective frequency which is to remain active until the FA2 signal is deactivated during deceleration.
- Do the same for FA3.
- For FA4 and FA5, set the switching thresholds under PNU C045 for acceleration and under PNU C046 for deceleration.
- Then, program one of the digital outputs 11 to 15 as FA1 to FA5 output by entering one of the following values under the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12:
- FA1: 01
- FA2: 02
- FA3: 06
- FA4: 24
- FA5: 25

By default, FA1 is assigned to digital output 11.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
C042	Frequency switching threshold during acceleration	-	\checkmark	0 to 400 Hz	The digital output configured as FA2 or FA3 (11 to 15) is activated when the frequency entered here is exceeded during acceleration.	0.0
C043	Frequency switching threshold during deceleration				The digital output configured as FA2 or FA3 (11 to 15) remains active as long as the actual frequency remains higher than the frequency entered during deceleration Fig. 101 and Fig. 102).	
C045	Frequency switching threshold during acceleration (2)				The digital output configured as FA4 or FA5 (11 to 15) is activated when the frequency entered here is exceeded during acceleration (\rightarrow Fig. 101 and Fig. 102).	
C046	Frequency switching threshold during deceleration (2)				The digital output configured as FA4 or FA5 (11 to 15) remains active as long as the actual frequency remains higher than the frequency entered during deceleration Fig. 101 and Fig. 102).	

Run signal (RUN)

The digital output configured as RUN remains activated as long as a frequency not equal to 0 Hz is present, i.e. as long as the motor is driven in a clockwise or anticlockwise direction. The RUN signal is also active during DC braking.

Figure 103: Digital output 11 configured as RUN (Run signal)

Figure 104: Function chart for RUN (Run signal)
f_{0} : Output frequency
(1) At PNU b082 set starting frequency

Program one of the digital outputs 11 to 15 as RUN output by
setting the value 00 in the corresponding PNU (C021 to C025) or in PNU C026 for signalling relay contacts K11-K12.

By default, RUN is assigned to digital output 12 .
(1)

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE
b082	Increased star- ting frequency	-	\checkmark	0.5 to 9.9 Hz	A higher starting frequency results in shorter acceleration and deceleration times (fyr example to overcome high fric- tional resistance). If the frequency is too high, fault message E02 may be issued. Up to the set starting frequency, the motor starts without a ramp function.

Overload signal OL, OL2

The digital output configured as OL or OL2 is activated when a freely selectable motor current is exceeded. The OL/OL2 output is active as long as the motor current is higher than this threshold.

Figure 105: Digital output 11 configured as OL/OL2 (overload signal)

Figure 106: Function chart for OL (overload signal)/OL2

- If you configure a programmable digital output as OL, you must, under PNU C041, enter the current at which, when exceeded, the OL signal is activated.
- To configure a programmable digital output as OL2, define the current under PNU C111 at which, when exceeded, the OL2 signal is activated.
- Then, program one of the digital outputs 11 to 15 as OL output by setting the corresponding PNU (C021 to C025) to 03.
- Then, program one of the digital outputs 11 to 15 as OL2 output by setting the corresponding PNU (C021 to C025) to 26 .

By default, OL is assigned to digital output 13.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
C040	Overload alarm signal	-	\checkmark	00	Always	01
				01	Only at constant speed	
C041	Overload alarm threshold			0 to $2 \times I_{\text {e }}{ }^{1)}$	The current value entered here determines when the OL signal is activated.	$I_{\text {e }}{ }^{1)}$
C111					The current value entered here determines when the OL2 signal is activated.	

1) Frequency inverter rated current

PID control deviation (OD)

The digital output configured as OD is activated when a user definable PID deviation (of the actual value from the setpoint value) is exceeded. The OD output remains active as long as this differential is exceeded.

Figure 107: Digital output 11 configured as OD (PID control deviation)

Figure 108: Function chart for OD (PID control deviation)
(1) Setpoint
(2) Actual value

- If you configure a programmable digital output as OD, you must also, under PNU C044 enter the threshold at which the OD signal will activate when the value is exceeded.
- Program one of the digital outputs 11 to 15 as OD by entering the value 04 in the corresponding PNU (C021 to C025) or in PNU C026 for signalling relay contacts K11-K12.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
C044	PID regulator deviation	-	\checkmark	0 to 100%	If the deviation between the setpoint and actual value exceeds the value entered here when PID control is active, the OD signal is activated.	3.0

Fault signal (AL)

The digital output configured as AL is activated when a fault has occurred.

Figure 109: Digital output 11 configured as AL (fault occurrence)

- Program one of the digital outputs 11 to 15 as AL by setting the corresponding PNU (C021 to C025) to 05.

By default, AL is assigned to signalling relay K 1 (terminal K 11 , K12, K14).
Please note that the programmable digital outputs (including the one configured as AL) are open collector types and therefore have different electrical characteristics than the signalling relay outputs (terminals K11, K12 and K14). In particular, the maximum voltage and current carrying capacity ratings are significantly lower than those of the relay outputs.
After the frequency inverter supply voltage has been switched off, the AL output remains active until the DC bus voltage has dropped below a certain level. This time depends, among other factors, on the load applied to the inverter.
The delay from the time a fault occurs until the AL output is activated is about 300 ms .

Release brake (BRK) and brake fault (BER)

The digital outputs configured as BRK and BER are used for controlling an external brake or an emergency brake. A brake is needed in application involving the lifting of heavy loads, such as lift and crane controllers. If an external brake is used, you should use the SLV (sensorless vector) or 0 Hz SLV control mode, which can provide a higher torque (\rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126).
To release the brake, the DV6 frequency inverter issues the BRK signal.

The DV6 issues the BER signal when:

- the time set under PNU b124 has expired and the digital input configured as BOK is not activated (acceleration),
- the time set under PNU b124 has expired and the digital input configured as BOK is not deactivated (deceleration),
- the time set under PNU b121 has expired and the Brake Enable current defined under PNU b126 was not reached.

Together with the BER output, the frequency inverter issues fault message E36.

Warning!

When the frequency inverter issues a fault message, it also deactivates the output to the motor controller. In this case, the motor is not stopped by the frequency inverter. For applications in which safety is an issue, you must therefore provide an emergency brake.

Figure 110: Digital output 11 configured as BRK (release brake) and 14 as BER (brake fault).

Figure 111: Brake control function chart

- Program one of the digital outputs 11 to 15 as BRK by entering the value 19 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.
- Program one of the digital outputs 11 to 15 as BER by entering the value 20 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.

For a detailed description of the extended parameter groups, \rightarrow Section "Controlling an external brake", Page 169.

Zero frequency (ZS)

The digital output configured as ZS becomes active when the frequency falls below the frequency set under PNU C063.

- Program one of the digital outputs 11 to 15 as ZS by entering the value 21 in the corresponding PNU (C021 to C025) or under PNU C026 for the signalling relay contacts K11-K12.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
C063	Frequency threshold for ZS output	-	\checkmark	0 to 100 Hz	When the actual frequency falls below this frequency, the ZS output is activated.	0.00

Torque exceeded (OTQ)

When the torque limits set under PNU C055 to C058 are reached or exceeded, the DV6 frequency inverter activates the digital output configured as OTQ.
This function is available only in vector control mode $(\rightarrow$ Section "Voltage/frequency characteristic and voltage boost", Page 126):

- SLV (sensorless vector) control
- 0 Hz SLV control
- Vector control with optional DE6-IOM-ENC module

Figure 112: Digital output 11 configured as OTQ (torque exceeded)

Figure 113: Function chart for OTQ (torque exceeded)

- Program one of the digital outputs 11 to 15 as OTQ by entering the value 07 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.

By default, OTQ is assigned to digital output 14.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
C055	Torque threshold (clockwise, drive mode)	-	\checkmark	0 to 200 \%	To DV6-340-55k	100
				0 to 180%	From DV6-340-75K	
C056	Torque threshold (anticlockwise, regenerative mode)			0 to 200%	To DV6-340-55k	
				0 to 180%	From DV6-340-75K	
C057	Torque threshold (anticlockwise, drive mode)			0 to 200%	To DV6-340-55k	
				0 to 180%	From DV6-340-75K	
C058	Torque threshold (clockwise, regenerative mode)			0 to 200%	To DV6-340-55k	
				0 to 180 \%	From DV6-340-75K	

Torque limitation (TRQ)

When the set torque limits are reached or exceeded, the DV6 frequency inverter activates the digital output configured as TRQ.
This function is available only in vector mode $(\rightarrow$ Section "Voltage/frequency characteristic and voltage boost", Page 126):

- SLV (sensorless vector) control
- 0 Hz SLV control
- Vector control with optional DE6-IOM-ENC module

To use a TRQ output, you must first configure one of the digital inputs 1 to 8 as TL (activate torque limitation) (\rightarrow Section "Torque limitation (TL), torque selection (TRQ1 and TRQ2)", Page 94).
Under PNU b040, specify how the torque limits are defined.
Under PNU b041 to b044, set the torque limits for the motor's four quadrants.

Figure 114: Digital output 11 configured as TRQ (torque limitation).

Figure 115: Function chart for TRQ (torque limitation)

- To activate vector control, enter one of the following values under PNU A044 \rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126).
- 03: SLV control
- 04: 0 Hz SLV control
- 05: Vector control with optional DE6-IOM-ENC module
- Under PNU b040, specify how the torque limits are defined.
- If you have entered the value 00 under PNU b040, enter the torque limits for each of the motor's four quadrants under PNU b041 to b044.
- Program one of the digital inputs 1 to 8 as TL by setting the corresponding PNU (C001 to C008) to 40.
- Program one of the digital outputs 11 to 15 as TRQ by entering the value 10 in the corresponding PNU (C021 to C025) or under PNU C026 for the signalling relay contacts K11-K12.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \text { A044 } \\ & \text { A244 } \\ & \text { A344 } \end{aligned}$	Voltage/ frequency characteristic	-	-	00	$\Delta U / f$ characteristic, linear	00
				01	$\Delta U / f$ characteristic, quadratic, for example fans	
				02	User-definable	
				03	Sensorless vector control (SLV) ${ }^{1)}$	
				04	0 Hz SLV 1)	
				05	Vector control ${ }^{1}$) with optional DE6-IOM-ENC module	
b040	Selection of torque limitation	-	\checkmark	00	Torque limitation in all four quadrants (PNU b041 to b044)	00
				01	Changeover of torque limits through digital inputs (TRQ1 and TRQ2)	
				02	Torque limit through analog input 0 (0 to 10 V)	
				03	Torque limit through optional module in slot 1	
				04	Torque limit through optional module in slot 2	

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b041	Torque limit, first quadrant	-	$\sqrt{ }$	0 to 200 \%	For DV6-340-075 to DV6-340-45K	150
				0 to 180 \%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b042	Torque limit, second quadrant	-	$\sqrt{ }$	0 to 200 \%	For DV6-340-075 to DV6-340-45K	150
				0 to 180 \%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b043	Torque limit, third quadrant	-	\checkmark	0 to 200 \%	For DV6-340-075 to DV6-340-45K	150
				0 to 180 \%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	
b044	Torque limit, fourth quadrant	-	$\sqrt{ }$	0 to 200 \%	For DV6-340-075 to DV6-340-45K	150
				0 to 180%	For DV6-340-55k to DV6-340-132K	
				no	For all variables: function not active.	

1) If SLV control is active, you should set the pulse frequency to at least 2.1 kHz with PNU b83 (\rightarrow Section "Pulse frequency", Page 164).

Instant stop (IP) and undervoltage (UV)

The UV (undervoltage) and IP (instant stop) signals can be assigned to one of the digital outputs 11 to 15 .
The UV output is activated when the internal DC link voltage falls below a specified limit value. The CPU monitors the DC link voltage, and as soon as it falls below a particular value, the output voltage is switched off to prevent the device from being damaged. This is important since, when the drive requires full power and the DC link voltage falls, the current rises, which can lead to an unexpected disconnection due to overload or overcurrent.

The IP output is activated when the supply voltage fails or an overvoltage occurs. With this function, the input voltage is monitored, allowing a disconnection to take place more quickly.
Voltage monitoring does not work if a phase failure occurs at the main power supply ($\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$) and the control electronics are supplied externally through the RO-TO terminals.

- Program one of the digital outputs 11 to 15 as IP by entering the value 08 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.
- Program one of the digital outputs 11 to 15 as UV by entering the value 09 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.

By default, IP is assigned to digital output 15.

Running time (RNT) and Mains On time (ONT)

The DV6 frequency inverter counts the time for which it is in RUN mode (the running time) and time for which it is connected to mains power ΔU_{LN} (the Mains On time). The digital output configured as RNT becomes active when the running time set under PNU b034 is exceeded. The digital output configured as ONT also accesses parameter PNU b043. The ONT output becomes active when the DV6 is connected to the supply voltage ΔU_{LN} longer than the time set under PNU b043. You can configure either one of the digital outputs as RNT or ONT, but not both at the same time.

Figure 116: Digital output 11 configured as RNT (running time)

Figure 117: Function chart for RNT (running time)

Program one of the digital outputs 11 to 15 as RNT by entering the value 11 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.

Figure 118: Digital output 11 configured as ONT (Mains On time)

Figure 119: Function chart for ONT (Mains On time)
$\Delta U_{\text {LN }}$: Supply voltage

- Program one of the digital outputs 11 to 15 as ONT by entering the value 12 in the corresponding PNU (C021 to C025) or under PNU C026 for signalling relay contacts K11-K12.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
b034	Running time or Mains On time exceeded	-	\checkmark	0 to 65530 h	When the time entered her is exceeded, either the digital output configured as RNT (running time) or the digital output configured as ONT (Mains On time) becomes active.	0

Motor thermal overload (THM)

The DV6 frequency inverters simulate a bimetal element to protect the motor. With its default setting, it exhibits the illustrated characteristic.

Figure 120: Example of tripping characteristic using a DV6-340-11K with the tripping current set at 46 A
t : Tripping time
I: Motor current

For a detailed description of how to set parameters PNU b012 to b020 for tripping, see \rightarrow Section "Electronic motor protection"Page 154.

If the motor current is greater than the set tripping current (dependent on the frequency inverter), the DV6 frequency inverter issues fault message E 05 and switches the output voltage ΔU_{2} off. With a digital output configured as THM, the frequency inverter outputs a signal before issuing the fault message. The THM output is activated when the motor exceeds the current set under PNU C061 (the tripping current in \%). The magnitude of the tripping current depends on the tripping characteristic defined under PNU b013 (\rightarrow Section "Electronic motor protection", Page 154).

Figure 121: Digital output 11 configured as THM (motor thermal overload)

- Under PNU C061, enter the percentage value of the tripping characteristic at which the THM output is activated.
- Program one of the digital outputs 11 to 15 as THM by entering the value 13 in the corresponding PNU (CO 21 to C 025) or under PNU C026 for signalling relay contacts K11-K12.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
C061	Thermal over- load warning	-	\checkmark	0 to 100%	The entered value relates to the tripping characteristic set under PNU b012 to b020. When the value set here is exceeded, the digital output configured as THM is activated.	80

Digital fault message output

With this function, you can define whether the DV6 issues a 3-bit encoded signal to digital outputs 11 to 13 or a 4-bit encoded signal to outputs 11 to 14 when a fault message is issued.

- Under PNU C062, specify the digital fault message output.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE		
C062	Digital fault message	-	\checkmark	00		No output to the digital outputs	00
			01		3-bit encoded output to digital outputs 11 to 13		

The table below shows all digital fault messages.

Digital output				4-bit encoded		3-bit encoded	
14	13	12	11	Fault message	Cause	Fault message	Cause
0	0	0	0	None	-	None	-
0	0	0	1	E01 to E04	Overcurrent	E01 to E04	Overcurrent
0	0	1	0	E05	Overload	E05	Overload
0	0	1	1	E07, E15	Overvoltage	E07, E15	Overvoltage
0	1	0	0	E09	Undervoltage	E09	Undervoltage
0	1	0	1	E16	Intermittent mains failure	E16	Intermittent mains failure
0	1	1	0	E30	IGBT fault	E30	IGBT fault
0	1	1	1	E06	Braking device overload	-	-
1	0	0	0	E08, E11, E23	- EEPROM fault - CPU fault - GA fault	-	-
1	0	0	1	E10	Fault in current transformer	-	-
1	0	1	0	E12, E13, E35, E36	- External fault message - Unattended start protection triggered - Thermistor fault - External brake fault	-	-
1	0	1	1	E14	Earth fault	-	-
1	1	0	0	-	-	-	-
1	1	0	1	E21	Overtemperature in power section	-	-
1	1	1	0	E24	Mains phase failure	-	-
1	1	1	1	E50 to E79	- RS 485 fault - Slot 1 or 2 fault - Fault 0 to 9	-	-

Signalling relay terminals K11, K12, K14

If a fault occurs, the signalling relay (changeover) is triggered. The switching conditions can be programmed as required.

By default, the signalling relay output is used for signalling faults, but you can also use it as a normal programmable digital output. To do this, enter a suitable value under PNU C026 (default value: 05 , output used for signalling faults).

Table 20: Default setting of the signalling relay

Default setting of the signalling relay				Reconfigured signalling relay terminals (PNU C036 = 00)			
Fault or DV6 switched off		Run signal	K11-K14	Fault message	Operating state	Run signal or DV6 switched off	
Voltage	Operating state	K11-K12		Voltage		K11-K12	K11-K14
On	Normal	Open	Closed	On	Normal	Closed	Open
On	Fault	Closed	Open	On	Fault	Open	Closed
Off	-	Closed	Open	Off	-	Closed	Open

- Under PNU C026, enter the type of signalling.
- Use the above table to configure contact K11-K12 or K11-K14 as make or break contacts under PNU C036.

PNU	Name	Adjustable in RUN mode		Value	Function	Page	WE
		Normal	Extended				
C026	Signal at signalling relay output	-	\checkmark	00	RUN: Operation	104	05
				01	FA1: Frequency reached	102	
				02	FA2: Frequency exceeded	102	
				03	OL: Overload alarm	105	
				04	OD: PID system deviation exceeded	106	
				05	AL: Fault	107	
				06	FA3: Frequency (within range) reached	102	
				07	OTQ: Torque reached (exceeded)	110	
				08	IP: Mains failure, immediate stop	113	
				09	UV: Undervoltage	113	
				10	TRQ: Torque limitation	111	
				11	RNT: Running time exceeded	114	
				12	ONT: Mains On time exceeded	114	
				13	THM: Motor thermal overload	115	
				19	BRK: Enable signal for external brake	108	
				20	BER: Brake fault	108	
				21	ZS: Zero speed	-1)	
				22	DSE: Speed deviation exceeded	-1)	
				23	POK: Positioning	-1)	
				24	FA4: Frequency exceeded	102	
				25	FA5: Frequency reached	102	
				26	OL2: Overload alarm 2	105	
C036	Signalling relay output	-	\checkmark	00	K11-K14 close with a fault message	-	01
				01	K11-K14 close when the supply voltage is applied	-	

1) \rightarrow Manual AWB82401-1431... for DE6-IOM-ENC encoder module

After a fault has occurred, the associated fault message is retained even after the voltage supply is switched off. This fault message can therefore be recalled from fault history register when voltage has been switched back on. However, the inverter is reset when the device is switched off, i.e. the fault message will not be output at the signalling relay's terminals after the inverter is switched back on.

If however, the fault signal is to be retained even after the inverter is switched back on, a latching (self maintaining) relay should be used.

Note that, when the signalling relay output is configured as a break contact (default setting), there is a delay from the time the supply voltage is switched on until the AL output is closed, and that a fault message for the AL output therefore appears for a short time after the supply is switched on.

6 Setting Parameters

The parameters listed in this section can be set using the keypad.
The adjustment and setting possibilities listed below are arranged thematically according to their function to provides a clear overview of all parameters assigned to a particular functional area (e.g. Section "DC braking (DCB)", PNU A051 to A059).

With the second and third parameter sets, you can assign additional values to some of the parameters. For these parameters, the PNU column contains a second or third value. The parameters of the first parameter set have a "0" after the letter, for example FO02. The parameters of the second parameter set have a "2" after the letter, for example F202, and those of the third parameter set a " 3 ", for example F302. For a summary of all all parameters of the second and third parameter sets, \rightarrow Section "Use second and third parameter set (SET/SET3)", Page 86.

Setting the display parameters

This section describes the parameters with which you can set the display of the LCD keypad.

PNU	Name	Function
d001	Output frequency in Hz	Output frequency display from 0.5 to 360 Hz . The "Hz" lamp on the keypad lights up.
d002	Motor current in A	Indication of the output current from 0.01 to 999.9 A (filtered indication with a time constant of 100 ms). The "A" lamp on the keypad lights up.
d003	Direction of rotation	Display: - F for clockwise operation (forward), - r for anticlockwise operation (reverse), - 0 for stop
d004	Actual value \times factor	Only with active PID control. The factor is set under PNU A075 and can have a value from 0.01 to 99.99; the default setting is 1.0 .
d005	Status of digital inputs 1 to 8	Example: Digital inputs 1, 3, 5 and 7 are activated. Digital inputs2, 4, 6 and 8 are deactivated.
d006	State of digital outputs 11 to 15 and fault signal output	Example: Digital outputs 11, 13 and 15 are activated. Digital outputs 12 and 14, and signal output K14 are deactivated.
d007	Output frequency \times factor	Indication of the product of the factor (PNU b086) and the output frequency in the range 0.01 to 99990. Examples: - Display indication 11.11 corresponds to 11.11, - 111.1 corresponds to 111.1, - 1111. corresponds to 1111, - 1111 corresponds to 11110.
d012	Motor torque	
d013	Output voltage	0 to 600 V
d014	Electrical input power	0.0 to 999.9 kW
d016	Running time	0 to 999, in $1000 \mathrm{~h} /$ unit
d017	Power on time	0 to 999 h, 1000 to 9999 h (100 to 999 kh)
d080	Total fault count	
d081	First (most recent) fault	Display of the most recent fault message and (after the PRG key is pressed) the output frequency, motor current and DC bus voltage at the time the fault occurred. If there is no current fault message, the display shows ---
d082	Second fault	Display of second from last fault message. If neither the second from last or third from last fault message has been saved, the display shows ----
d083	Third fault	Display of third from last fault message. If the third from last fault message has not been saved, the display shows ----
d084	Fourth fault	Display of fourth from last fault message. If the fourth from last fault message has not been saved, the display shows ---
d085	Fifth fault	Display of fifth from last fault message. If the fifth from last fault message has not been saved, the display shows ---
d086	Sixth fault	Display of sixth from last fault message. If the sixth from last fault message has not been saved, the display shows ----
d090	Warning	

Basic functions

Input/display frequency value

PNU F001 indicates the current setpoint frequency or the current fixed frequency. You can change the frequencies with the arrow keys and save them according to the setting in PNU A001 and fixed frequency steps FF1 to FF4 (digital inputs) (\rightarrow Section "Fixed frequency selection (FF1 to FF4)", Page 69).

With PNU F001, you can modify parameters even though the parameter protection PNU b031 is set (\rightarrow Page 83).

Display/input frequency setpoint value

If you have not activated any fixed frequencies, PNU F001 displays the frequency setpoint value.

The frequency setpoint value can be assigned in one of three ways, dependent on PNU A001:

- through the installed potentiometer on the keypad, PNU A001 $=00$;
- through analog inputs, PNU A01 = 01 (default):
- 0 (0 to 10 V),
- $02(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$ or
- OI (4 to 20 mA),
- through PNU F001 or PNU A020, PNU A001 = 02.

If you specify the setpoint frequency with PNU A020
(\rightarrow Page 123), you can enter a new value under PNU F001, which is automatically saved to PNU A020:

- Change the present value with the arrow keys.
- Save the modified value with the ENTER key.

The saved value is automatically written to PNU A020.

Displaying/entering fixed frequencies

If you have activated the fixed frequencies through functions FF1 to FF4 of the digital inputs, PNU F001 indicates the selected fixed frequency.

For details about changing the fixed frequencies, \rightarrow Section
"Entering the fixed frequencies in PNU F001", Page 71.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
F001	Input/indi- cation of frequency setpoint value	\checkmark	\checkmark	$\begin{aligned} & 0.5 \text { to } 360 \mathrm{~Hz} \\ & 0.0 \text { to } 400 \mathrm{~Hz} \end{aligned}$	Resolution $\pm 0.1 \mathrm{~Hz}$ The setpoint can be defined using various methods: - With PNU F001 or A020: Enter the value 02 under PNU A001. - With the potentiometer on the keypad: Enter the value 00 under PNU A001. - With a 0 to 10 V or a -10 to +10 V voltage signal or a 4 to 20 mA current signal at input terminals O or Ol : Enter the value 01 under PNU A001. - With the digital inputs configured as FF1 to FF4. After selection of the required fixed frequency stage using FF1 to FF4, the frequency for the respective stage can be entered. The display of the setpoint value is independent of which method was used to set the setpoint value.	0.0

Acceleration time 1

Acceleration time 1 defines the time in which the motor reaches its end frequency after a start signal is issued.

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function | WE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F002 Acceleration
 F202
 time 1 | \checkmark | \checkmark | 0.01 to 3600 s | Resolution of 0.01 s at an input of 0.01 to 99.99
 Resolution of 0.1 s at 100.0 to 999.9
 Resolution of 1 s at 1000 to 3600 s | 30.0 |

Deceleration time 1

Deceleration time 1 defines the time in which the motor brakes to 0 Hz after a stop signal.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
F003	Deceleration time 1	\checkmark	\checkmark	0.1 to 3600 s	Resolution of 0.01 s at an input of 0.01 to 99.99 Resolution of 0.1 s at 100.0 to 999.9 Resolution of 1 s at an input of 1000 to 3600	30.0
F303						

Direction of rotation

The direction of rotation defines the direction in which the motor turns after a start signal is issued.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
F004	Direction of rotation	-	-	00	The motor runs in a clockwise direction.	00
			01	The motor runs in an anticlockwise direction.		

Setting the frequency and start signal parameters

This section describes the methods for adjusting and setting the start signal and basic frequency parameters.

Definition of frequency setpoint value

With PNU A001, specify the method of defining the setpoint frequency:

- using the potentiometer on the keypad
- through analog input $0(0$ to 10 V$), 02(-10$ to $+10 \mathrm{~V})$ or Ol (4 to 20 mA)
- through PNU F001 or PNU A020
- through the RS 485 serial interface
- through slot 1 or 2 for optional modules

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A001	Defined frequency setpoint	-	-	00	Definition with the potentiometer on the keypad	01
				01	Definition through analog input $0(0$ to 10 V$), 02(\pm 10 \mathrm{~V})$ or Ol (4 to 20 mA)	
				02	Definition through PNU F001 and/or PNU A020	
				03	RS 485 serial interface	
				04	Setpoint definition through the optional module in slot 1	
				05	Setpoint definition through the optional module in slot 2	
A020	Frequency setpoint value	\checkmark	\checkmark	0.01 to 400 Hz	You can enter a frequency setpoint value. To do this, enter the value 02 under PNU A001.	0.0
F001	Indication/ input of frequency value	\checkmark	\checkmark		Indication of the current frequency setpoint value or the current fixed frequency. Modified values are saved with the ENTER key according to the selection of the digital inputs configured as FF1 to FF4 $(\rightarrow$ Section "Fixed frequency selection (FF1 to FF4)", Page 69). Resolution $\pm 0.01 \mathrm{~Hz}$	

Start signal

With PNU A002, you specify how the start signal is to be issued:

- through digital inputs, for example the FW input or a digital input configured as REV,
- with the ON key on the keypad,
- through the RS 485 serial interface,
- through slot 1 or 2 for optional modules.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
A002	Start signal	-	-	01	The motor start signal is issued through digital inputs, for example through the FW input or a digital input configured as REV.	01

Base frequency

The base frequency is the frequency at which the output voltage has its maximum value.

PNU	Name	Adjustable in RUN mode Nor- mal	Exten- ded	Value	WE
A003	Base	-	-	30 to 400 Hz	50
A203	frequency				
A303					

Maximum end frequency

If there is a constant-voltage frequency range beyond the base frequency defined with PNU A003, this range is defined with PNU A004. The maximum end frequency must not be smaller than the base frequency.

Figure 122: Maximum end frequency
f_{1} : Base frequency
f_{2} : Maximum end frequency

PNU	Name	Adjustable in RUN mode Nor- mal	Exten- ded	Value	WE
A004	Maximum	-	-	30 to 400 Hz	50
A204	end				
A304	frequency				

Voltage/frequency characteristic and voltage boost

Boost

The boost function increases the voltage of the U/f characteristic (and consequently boosting the torque) in the lower frequency range. Manual voltage boost raises the voltage in the frequency range from the starting frequency (default setting: 0.5 Hz) to half the base frequency (25 Hz at the default setting of 50 Hz) in every operating state (acceleration, static operation, deceleration), irrespective of the motor load. With automatic voltage boost, by contrast, the voltage is increased according to the motor load. A voltage boost may cause a fault message and trip due to the higher currents involved.

Manual voltage boost only has an effect when PNU A044 contains the value 00 (default, linear $\Delta U / f$ characteristic) or 01 (quadratic $\Delta U / f$ characteristic).

Figure 123: Voltage boost characteristics
Parameter settings:
$A 041=00$
$A 042=50$
$\mathrm{A} 043=10.0$
$\mathrm{A} 044=00$
$A 045=100$

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A041 } \\ & \text { A241 } \end{aligned}$	Voltage boost characteristics	-	-	00	Manual voltage boost, increase always active	00
				01	Automatic voltage boost, increase on demand	
$\begin{aligned} & \text { A042 } \\ & \text { A242 } \\ & \text { A342 } \end{aligned}$	Manual boost percentage	\checkmark	\checkmark	0.0 to 20 \%	Setting the voltage increase with manual boost.	1.0
$\begin{aligned} & \hline \text { A043 } \\ & \text { A243 } \\ & \text { A343 } \end{aligned}$	Maximum voltage boost at 1% of the base frequency	\checkmark	\checkmark	0.0 to 50 \%	Setting the frequency with the highest voltage boost as a percentage of the base frequency (PNU A003).	5.0

Voltage/frequency characteristics

Under PNU A044 and A045, adjust the behaviour of the DF6 to match its load. Under PNU A044, set the torque characteristics of the DV6 frequency inverter (see below). Under PNU A045, set the voltage gain of the DV6 frequency inverter. PNU A045 relates to the voltage set under PNU A082.

Linear $\Delta U / f$ characteristic

For a constant torque, enter the value 00 under PNU A044 (default). The DV6 frequency inverter then increases the output voltage ΔU_{2} on a linear ramp up to the base frequency in PNU A003.

Figure 124: Linear $\Delta U / f$ characteristic
ΔU_{2} :Output voltage
f_{0} : Output frequency

Quadratic $\Delta U / f$ characteristic

For a reduced torque, enter the value 01 under PNU A044. The DV6 frequency inverter then increases the output voltage ΔU_{2} on a linear ramp up to ten percent of the base frequency in PNU A003. Then, the DV6 increases ΔU_{2} on a quadratic ramp (reduced) to the transition frequency in PNU A003.

Figure 125: Quadratic $\Delta U / f$ characteristic
ΔU_{2} :Output voltage
f_{0} : Output frequency

Adjustable $\Delta U / f$ characteristic

For a freely programmable torque, enter the value 02 under PNU A044. Under PNU b100 to b113, you can assign seven different frequency-voltage pairs to the DV6. However, the frequencies f_{1} to f_{7} must have increasing values for this: $f_{1} \leqq f_{2} \leqq f_{3} \leqq \ldots$ $\leqq f_{7}$. The voltages ΔU_{10} to ΔU_{70} are freely adjustable.

Figure 126: Adjustable $\Delta U I f$ characteristic
ΔU_{2} :Output voltage
f_{0} : Output frequency
f_{7} can be up to the maximum frequency of the DV6. ΔU_{70} can be up to the input voltage ΔU_{1} or the voltages set under PNU A082.

Figure 127: Limits of the freely adjustable $\Delta U / f$ characteristic
ΔU_{2} :Output voltage
f_{0} : Output frequency

If you use the adjustable $\Delta U / f$ characteristic, the following parameters are no longer valid:

- PNU A003: Base frequency
- PNU A004: End frequency
- PNU A041: Voltage boost characteristic

SLV and 0 Hz SLV control

With SLV and 0 Hz SLV control, you can achieve a high torque output and speed stability. For a detailed description of SLV control, \rightarrow Section "SLV and autotuning", Page 171.

Vector control with optional DE6-IOM-ENC module

If you are using a DE6-IOM-ENC feedback (encoder) module and want to use it to regulate the motor torque, set PNU A044 to 05. For a detailed description of, see manual AWB8240-1416... for the encoder module.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A044 } \\ & \text { A244 } \\ & \text { A344 } \end{aligned}$	Voltage/ frequency characteristic	-	-	00	Linear V/f characteristic (constant torque).	00
				01	Quadratic V/f characteristic (reduced torque)	
				02	User-definable	
				03	Sensorless vector control (SLV) ${ }^{1}$) is active	
				04	$0 \mathrm{~Hz} \mathrm{SLV}{ }^{1}$) is active	
				05	Vector control ${ }^{1}$) with optional DE6-IOM-ENC module	
A045	Output voltage	\checkmark	\checkmark	20 to 100 \% of the input voltage	 The output voltage can be set from 20 to 100% of the input voltage.	100
b100	Frequency coordinate f_{1}	-	-	0 to 400 Hz	First frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0
b101	Voltage coordinate ΔU_{10}	-	-	0 to $\Delta U_{1}{ }^{2)}$ or PNU A082	First voltage coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0.0
b102	Frequency coordinate f_{2}	-	-	0 to 400 Hz	Second frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3)}$	0
b103	Voltage coordinate ΔU_{20}	-	-	0 to $\Delta U_{1}{ }^{2)}$ or PNU A082	Second voltage coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0.0
b104	Frequency coordinate f_{3}	-	-	0 to 400 Hz	Third frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0
b105	Voltage coordinate ΔU_{30}	-	-	0 to $\Delta U_{1}{ }^{2)}$ or PNU A082	Third voltage coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0.0
b106	Frequency coordinate f_{4}	-	-	0 to 400 Hz	Fourth frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0
b107	Voltage coordinate ΔU_{40}	-	-	0 to $\Delta U_{1}{ }^{2}$) or PNU A082	Fourth voltage coordinate of the $\Delta U / f$ characteristic ${ }^{3)}$	0.0
b108	Frequency coordinate f_{5}	-	-	0 to 400 Hz	Fifth frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3)}$	0
b109	Voltage coordinate ΔU_{50}	-	-	0 to $\Delta U_{1}{ }^{2}$) or PNU A082	Fifth voltage coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0.0
b110	Frequency coordinate f_{6}	-	-	0 to 400 Hz	Sixth frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0
b111	Voltage coordinate ΔU_{60}	-	-	$\left.0 \text { to } \Delta U_{1}{ }^{2}\right) \text { or }$ PNU A082	Sixth voltage coordinate of the $\Delta U / f$ characteristic ${ }^{3}$)	0.0
b112	Frequency coordinate f_{7}	-	-	0 to 400 Hz	Sevenths frequency coordinate of the $\Delta U / f$ characteristic ${ }^{3}$	0

PNU	Name	Adjustable in RUN mode Normal		Value	Function	WE
b113	Voltage coordi- nate ΔU_{70}	-	-	0 to $\Delta U_{1}{ }^{2)}$ or PNU $A 082$	Sevenths voltage coordinate of the $\Delta U / f$ characteristic	0.0

1) If SLV control is active, you should set the pulse frequency to at least 2.1 kHz with PNU b083 (\rightarrow Section "Pulse frequency", Page 164).
2) $\Delta U_{1}=$ input voltage of the DV6
3) You do not have to set all frequency and voltage coordinates. The DV6 automatically calculates the characteristic curve.

DC braking (DCB)

To activate DC braking for decelerating the motor:

- apply a Stop signal (PNU A051 = 01)
- activate the digital input configured as DB $(\rightarrow$ Section "Activate DC braking DB", Page 88).

By applying a pulsed DC voltage to the motor stator, a braking torque is induced in the rotor and acts against the rotation of the motor. With DC braking, a high level of stopping and positioning accuracy can be achieved.

Under PNU A051, specify whether DC braking is activated automatically when the frequency set under PNU A052 is reached and/ or when the DB input is activated.

Under PNU A052, enter the frequency at which DC braking is activated when PNU A051 is set to 00 .
Under PNU A053 enter the waiting time which is to elapse before DC braking becomes active after activation of the DB input or when the set startup frequency is reached.

Under PNU A054 enter the braking torque between 0 and 100%. Under PNU A055 enter the braking duration.
Under PNU A056, specify the braking behaviour when the DB input is active:

- 00: DC braking starts when the DB input is activated and ends only when the time defined under PNU A055 has expired.
- 01: Braking starts as soon as the DB input is active and ends when the $D B$ input is deactivated.

DC braking can also be activated before motor acceleration, for example in lifting and conveying applications (releasing the mechanical holding brake) or with drives which are operated using process variables, such as fans, pumps and compressors.

Under PNU A057, set the braking torque before acceleration (0 to $100 \%)$. The motor is then braked before starting.
Under PNU A058, set the braking duration during acceleration.
Under PNU A059, set the pulse frequency for DC braking. For values above 5 kHz observe derating (see below).

Caution!

DC braking results in additional heating of the motor.You should therefore configure the braking torque (PNU A054 and A057) as low and the braking duration (PNU A055 and A058) as short as possible.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A051	DC braking	-	\checkmark	00	Automatic DC braking disabled	00
				01	Automatic DC braking activated	
A052	Activation frequency	-	\checkmark	0 to 60 Hz	When PNU A051 is set to 01, DC braking is activated when the actual frequency falls below the frequency entered here.	0.50
A053	Waiting time for deceleration	-	\checkmark	0 to 5 s	When the frequency set with PNU A052 is reached or when the DB input is activated, the motor coasts for the time entered here before $D C$ braking is activated.	0.0
A054	Braking torque for deceleration	-	\checkmark	0 to 100\%	Setting range for the braking torque during motor deceleration.	0
A055	Braking duration for deceleration	-	\checkmark	0 to 60 s	The time during which DC braking is active during deceleration.	0.0
A056	Behaviour on activation of the DB input	-	\checkmark	00	DC braking starts when the DB input is activated and ends only when the time defined under PNU A055 has expired.	01
				01	Braking starts as soon as the DB input is active and ends when the DB input is deactivated.	
A057	Braking torque for acceleration	-	\checkmark	0 to 100\%	Setting range for the braking torque before the motor is accelerated.	0

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A058 | Braking dura-
 tion for accele-
 ration | - | \checkmark | 0 to 60 s | The time during which DC braking is active before accelera-
 tion. | 0.0 |
| A059 | Braking
 frequency f_{B} | - | - | 0.5 to 15 kHz | Pulse frequency for DC braking; applies to DV6-340-075 to
 DV6-340-55K (observe derating). | 3.0 |

Derating for DC braking

The DV6 frequency inverters use the braking frequency f_{B}, which can be adjusted under PNU A059, to generate the required voltage for DC braking. This is not identical with the pulse frequency during motor operation set under PNU b083. The higher the set braking frequency, the lower is the relative braking torque $M_{B}(\rightarrow$ Fig. 128 and Fig. 129).

Figure 128: Derating for DC braking DV6-340-075 to DV6-340-55K
M_{B} : Braking torque
f_{B} : Braking frequency

Operating frequency range

The frequency range specified with the values entered under PNU b082 (starting frequency) and PNU A004 (end frequency), can be limited with PNU A061 and A062 (\rightarrow Fig. 130). As soon as the frequency inverter receives a start signal, it applies the frequency set under PNU A062.

Figure 130: Upper frequency limit (PNU A061) and lower frequency limit (PNU A062)

To avoid resonance within the drive system, three frequency jumps can be programmed under PNU A063 to A068. In the example (\rightarrow Fig. 131), the first frequency jump (PNU A063) is at 15 Hz , the second (PNU A065) at 25 Hz and the third (PNU A067) at 35 Hz . The jump widths (adjustable under PNU A064, A066 and A068) are set to 1 Hz in the example.

Figure 131: Frequency jumps

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A061 } \\ & \text { A261 } \end{aligned}$	Maximum operating frequency	-	\checkmark	0 to 400 Hz	This function can be deactivated by entering 0.0	0.0
$\begin{aligned} & \hline \text { A062 } \\ & \text { A262 } \end{aligned}$	Minimum operating frequency			0 to 400 Hz		0.0
A063	First frequency jump			0 to 400 Hz		0.0
A064	First jump width			0 to 10 Hz		0.5
A065	Second frequency jump			0 to 400 Hz		0.0
A066	Second jump width			0 to 10 Hz		0.5
A067	Third frequency jump			0 to 400 Hz		0.0
A068	Third jump width			0 to 10 Hz		0.5

Acceleration pause

With this function, you can specify a pause in the acceleration ramp, during which the output frequency remains constant. If the frequency inverter is overloaded during acceleration, for example when accelerating heavy loads or when starting motors in reverse, you can use this function to define a rest period in which no acceleration takes place to prevent frequency inverter overload. Under PNU A069, specify the frequency at which the pause is to start. PNU A070 determines the duration of the pause.

With motors running in reverse, this function keeps the output voltage and output frequency low until the motor has stopped and is running in the required direction before accelerating at the specified acceleration ramp.

Figure 132: Function chart for acceleration waiting time
f_{0} : Output frequency
f_{s} : Setpoint frequency

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A069	Waiting time frequency	-	\checkmark	0 to 400 Hz	When this frequency is reached, the pause begins.	0.00
A070	Waiting time			0 to 60 s	Setting the waiting time.	0.0

PID controller

The DV6 frequency inverters have PID control as standard. This can be used, for example, for flow and throughput controllers with fans and pumps. PID control has the following features:

- The setpoint value can be issued through the frequency inverter keypad or through an external digital signal (fixed frequencies). Sixteen different setpoint values are possible. In addition, the setpoint can be defined with an analog input signal (0 to 10 V or 4 to 20 mA).
- With the DV6, the actual value signal can be fed back using an analog input voltage (up to 10 V) or an analog input current (up to 20 mA).
- The permissible range for the actual value signal feedback can be specifically matched (e.g. 0 to $5 \mathrm{~V}, 4$ to 20 mA , or other ranges).
- With the aid of a scale adjustment, you can match the setpoint signal and/or the actual value signal to the actual physical quantities (such as air or water flow, temperature, etc.) and view them on the display.

PID control

" P " stands for proportional, "।" for integral and "D" for differential. In control engineering, the combination of these three components is termed PID closed-loop control, PID regulation or PID control. PID control is used in numerous types of application, e.g. for controlling air and water flow or for controlling pressure and temperature. The output frequency of the inverter is controlled by a PID control algorithm to keep the deviation between the setpoint and actual value as small as possible. The figure below illustrates PID control in the form of a block diagram:

Figure 133: PID control block diagram

G1: DV6 series frequency inverters
w: Setpoint value
x : Actual value
P1: Controlled variable
B1: Measured value converter
(1) System deviation
(2) Inverter
(3) Fans, pumps or similar devices
(4) Setpoint frequency

PID control is only possible after the type of setpoint value and actual value used have been defined.

The example in the following figure shows a fan control system:

Figure 134: Example of a fan control system
G1: DV6 series frequency inverters
w: Setpoint value
x: Actual value
P1: Controlled variable
B1: Measured value converter
(1) Fan

P: Proportional component

This component ensures that the output frequency and the system deviation are proportional to each other. With PNU A072, you can specify the proportional gain $\left(K_{p}\right)$ in percent.

The following figure illustrates the relationship between system deviation and output frequency. A large value of K_{p} results in a quick response to a change of the system deviation. If, however, K_{p} is too large, the system becomes unstable.

Figure 135: Proportional gain K_{p} x: System deviation

The maximum output frequency in Figure 135 is defined as 100%. In PNU A072, you can set K_{p} to between 0.2 and 5.0.

I: Integral component

This component results in a correction of the output frequency by integration of the system deviation. In the case of purely proportional control, a large system deviation causes a large change in the output frequency. It follows, then, that if the system deviation is very small, the change in the output frequency is also very small. The problem is that the system deviation cannot be completely eliminated. Hence the need for an integral component.

The integral component causes a continuous adding up of the system deviation so that the deviation can be reduced to zero. The reciprocal value of the integration gain is the integration time $\mathrm{T}_{\mathrm{i}}=1 / \mathrm{K}_{\mathrm{i}}$.

For the DV6 frequency inverters, set the integration time $\left(\mathrm{T}_{\mathrm{i}}\right)$. The value can be between 0.5 s and 3600 s . To disable the integral component, enter 0.0.

D: Differential component

This component causes a differentiation of the system deviation. Because pure proportional control uses the current value of the system deviation and pure integral control the values from previous actions, a certain delay in the control process always occurs. The D component compensates for this behaviour.

Differential control corrects the output frequency using the rate of change of the system deviation. The output frequency can therefore be compensated very quickly.
K_{d} can be set between 0 and 100 s .

PID control

PID control combines the P, I and D components described in the previous sections. In order to achieve the optimum control characteristics, each of the three PID parameters must be set. Uniform control behaviour without large steps in the output frequency is guaranteed by the proportional component; the integral component minimizes the existing system deviation the steady-state and the differential component ensures a quick response to a rapidly changing actual value signal.
As differential control is based on the differentiation of the system deviation, it is very sensitive and also responds to unwanted signals - such as interference - which can result in system instability. Differential control is normally not required for flow, pressure and temperature control.

Setting the PID parameters

Values for the PID parameters must be chosen depending on the application and the system's control characteristics. The following points are important to achieve effective PID control:

- A stable steady-state behaviour
- A fast response
- A small system deviation in the steady state

Parameters K_{p}, T_{i} and K_{d} must be set within the stable operating range. As a general rule, increasing one of the parameters $\mathrm{K}_{\mathrm{p}}, \mathrm{K}_{\mathrm{i}}$ (= reduction of T_{i}) and K_{d} results in a faster system response. A very large increase however, causes system instability, as the returned actual value will begin to oscillate, in the worst case, resulting in divergent behaviour (\rightarrow Fig. 136 to Fig. 139):

Figure 136: Divergent behaviour
w: Setpoint value
(1) Output signal

Figure 137: Oscillation, dampened
w: Setpoint value
(1) Output signal

Figure 138: Good control characteristics
w: Setpoint value
(1) Output signal

Figure 139: Slow control, large static system deviation
w: Setpoint value
(1) Output signal

The following table provides guidelines for setting each parameter.

Table 21: Setting the controller regulation times

A setpoint change	causes a slow response	Increase proportional component (K_{p})
	causes a fast but unstable reaction	Set a lower P component
Setpoint and actual value	differ greatly	Reduce integral component (T_{i})
	approach each other after oscillation	Set a higher I component
After increasing K	the response is still slow	Increase D component (Kd)
	the response is still unstable	Set a lower D component

Structure and parameters of the PID controller

PID control active/inactive

DV6 frequency inverters can operate in one of the following two control modes:

- Frequency control active (i.e. PID control inactive)
- PID control active

PNU	Name	Adjustable in RUN mode Normal Extended		Value	Function	WE
A071	PID control active/inactive	-	\checkmark	00	PID control is not used (inactive)	00

Frequency control is the standard control method used by many frequency inverters. A setpoint value is defined by a control unit (keypad) as an analog voltage or current signal, or through a four bit wide digital command applied to the control signal terminals.

With PID control, the inverter's output frequency is controlled by a control algorithm to ensure that the deviation between the setpoint and actual value is kept at zero.

Figure 140: PID control parameters
w: Setpoint value
(1) Frequency definition with keypad, fixed frequency
x: Actual value
f_{0} : Output frequency
(2) Analog definition with potentiometer, analog inputs, current or voltage

Internal regulator-based calculations

All calculations within the PID algorithm are carried out in percentages, so that different physical units can be used, such as

- Pressure ($\mathrm{N} / \mathrm{m}^{2}$),
- Flow rate ($\mathrm{m}^{3} / \mathrm{min}$),
- Temperature $\left({ }^{\circ} \mathrm{C}\right)$, etc.

The setpoint and returned actual values can, for example, also be compared as percentages.
A useful scaling function is also available (PNU A075). When these parameters are used, you can define the setpoint directly as the required physical quantity and/or display setpoint and actual values as physical quantities suitable for the process.
In addition, an analog signal matching is available (PNU A011 to A014), with which you can define a range based on the actual value feedback signal. The following graphs illustrate the mode of operation of this function.

Setpoint definition

There are three ways of defining the setpoints:

- Keypad
- Digital control signal terminal input (4 bit)
- Analog input (terminals $0-\mathrm{L}$ or $\mathrm{Ol}-\mathrm{L}$)

If the digital setpoints are defined through the control signal terminals, define the required setpoint value in PNU A021 to A035. The setting procedure is similar to the one which is used in frequency regulation mode (i.e. with deactivated PID control) for setting the respective fixed frequencies (\rightarrow Section "Fixed frequency selection (FF1 to FF4)", Page 69).

Actual value feedback and actual value signal matching

 You can specify the actual value signal as follows:- With an analog voltage on control signal terminal 0 (maximum 10 V)
- With an analog current on control signal terminal OI (maximum 20 mA)

With PNU A076, select one of the two available methods.
To adapt the PID control to the respective application, the actual value feedback signal can also be matched as shown in Figure 141:

Figure 141: Analog actual value signal matching

As shown by the graphs, the setpoint value must be within the valid range on the vertical axis if you have set functions PNU A011 and A012 to a value not equal to 0 . Because there is no feedback signal, stable control cannot otherwise be guaranteed. This means that the frequency inverter will either

- output the maximum frequency,
- go to stop mode, or
- output a lower limit frequency.

Scaling adjustment

Scaling adjustment and scaling allow the setpoint and actual value to be displayed and the setpoint value to be entered directly in the correct physical unit. For this purpose, 100% of the returned actual value is taken as a basis. By default, inputs and displays are based on 0 to 100%.

Example: In the first diagram in Figure 141, 20 mA of the feedback signal correspond to 100% of the PID internal factor. If for example the current flow is $60 \mathrm{~m}^{3} / \mathrm{min}$ with a feedback signal of 20 mA , the parameter is set to 0.6 with PNU A075 (=60/100). With PNU d004, the process-corrected value can be displayed and the setpoint value can be entered directly as a process-corrected quantity.

Figure 142: Example for scaling adjustment
w: Setpoint value
x: Returned actual value
(1) Fan

Summary of the relevant parameters

The DV6 frequency inverters use the same parameters for both frequency control and PID modes. The designations of the respective parameter relate only to frequency control mode, as this mode is used in most cases. When PID mode is used, some of the parameters have other designations.

The table below contains an explanation of these parameters for both frequency control mode and PID mode:

PNU	Meaning of the parameters when used in	PID mode
d004	-	Indication of the returned actual value
F001	Indication of the output frequency	Indication of the setpoint value
A001	Frequency setpoint definition	Setpoint definition
A011	Frequency at minimum setpoint value (units: Hz)	Feedback percentage actual value for lower acceptance threshold (units: \%)
A012	Frequency at maximum setpoint value (units: Hz)	Feedback percentage actual value for upper acceptance threshold (units: \%)
A013	Minimum setpoint value (units: Hz)	Lower acceptance threshold for voltage or current on the actual value input (units: \%)
A014	Maximum setpoint value (units: Hz)	Upper acceptance threshold for voltage or current at the actual value input (unit: \%)
A021 to A035	Fixed frequencies 1 to 15	Digital adjustable setpoint values 1 to 15

PNU	Meaning of the parameters when used in Frequency control mode	PID mode
A071	-	PID control active/inactive
A072		P component of the PID control
A073		I component of the PID control
A074		D component of the PID control
A075		Setpoint factor of the PID control
A076		Input actual value signal for PID control

Settings in frequency control mode

Before you use PID mode, you must configure the parameters in frequency control mode. Observe the following two points:

Acceleration and deceleration ramp

The output frequency calculated with the PID algorithm is not immediately available at the frequency inverter output, as the output frequency is affected by the set acceleration and deceleration times. Even if, for example, a large D component is defined, the output frequency is significantly influenced by the acceleration and deceleration time, and this causes unstable control behaviour.

To achieve stable behaviour in every PID control range, the acceleration and deceleration times should be set as low as possible.

After every acceleration and deceleration ramp parameter change, parameters PNU A072, A073 and A074 must be readjusted.

Frequency jumps/frequency range

Frequency jumps must be defined to meet the following requirement: A change to the feedback actual value signal must not occur during execution of a frequency jump. If a stable operating point exists within a frequency jump range, an oscillation between the end values of this range occurs.

Configuration of setpoint value and actual value

In PID mode, you must first specify how the setpoint is to be defined and where the actual value is to be supplied. The table below lists the required settings:

The setpoint value and the actual value cannot be supplied through the same analog input terminal.
Note that the frequency inverter brakes and stops according to the set deceleration ramp as soon as a stop signal is issued in PID operation.

Scaling

Set the scaling to the process-corrected physical unit as required by your application, for example to flow, pressure or temperature. For a detailed description, \rightarrow Section "Scaling adjustment", Page 141.

Setpoint adjustment through digital inputs

The following points must be observed when defining the setpoint through the digital inputs (4 bit):

Assignment of the digital inputs

The DV6 frequency inverters have eight programmable digital inputs. Assign functions FF1 to FF4 to four of the inputs using PNU C001 to C006 to correspond to inputs 1 to 6 of the inverter.

Adjustment of the setpoint values

First, select the required number of different setpoints (up to 16) from the table below. Under PNU A021 (corresponds to the first setpoint value) to A035 (corresponds to the 15th setpoint value), enter the desired setpoint value. PNU A020 and F001 correspond to setpoint 0.

If the setpoints are to be scaled, note that they must be entered as process-corrected quantity values in accordance with this scaling.

No.	FF4	FF3	FF2	FF1	Setpoint number (PNU)
1	0	0	0	0	Setpoint value 0 (PNU A020 or F001)
2	0	0	0	1	Setpoint value 1 (PNU A021)
3	0	0	1	0	Setpoint value 2 (PNU A022)
4	0	0	1	1	Setpoint value 3 (PNU A023)
5	0	1	0	0	Setpoint value 4 (PNU A024)
6	0	1	0	1	Setpoint value 5 (PNU A025)
7	0	1	1	0	Setpoint value 6 (PNU A026)
8	0	1	1	1	Setpoint value 7 (PNU A027)
9	1	0	0	0	Setpoint value 8 (PNU A028)
10	1	0	0	1	Setpoint value 9 (PNU A029)
11	1	0	1	0	Setpoint value 10 (PNU A030)
12	1	0	1	1	Setpoint value 11 (PNU A031)
13	1	1	0	0	Setpoint value 12 (PNU A032)
14	1	1	0	1	Setpoint value 13 (PNU A033)
15	1	1	1	0	Setpoint value 14 (PNU A034)
16	1	1	1	1	Setpoint value 15 (PNU A035)
$\begin{aligned} & \text { 1: On } \\ & \text { 0: Off } \end{aligned}$					

If, for example, you only require up to four different setpoint values, only FF1 and FF2 need to be used; for five to eight different setpoint values, only FF1 to FF3 are required.

Activating PID mode

- Under PNU A071, enter the value 01.

You can make this entry at the very start, before defining all other settings.

Example for setting K_{p} and T_{i}

As for the parameter changes, check the output frequency or the feedback actual value signal with an oscilloscope $(\rightarrow$ Fig. 136 to Fig. 139, Page 136).
Use two different setpoint values and switch between them using the digital control signal terminals.

The output should then always exhibit a stable behaviour.

Adjustment of the P component

Begin by setting only the P component, but not the I component and the D component.

- First, enter a very small proportional component under PNU A072 and check the result.
- If necessary, slowly increase this value until an acceptable output behaviour has been achieved.

Alternatively, set a very large P component and observe the behaviour of the output signal. If the behaviour is unstable, set a lower value and observe the result. Repeat this process.
If the behaviour is unstable, reduce the P component.
The P component is correct when the system deviation reaches a static state within acceptable limits.

Setting the integral component and matching K_{p}

- First, in PUN A073, enter a very small integral component.
- Set the P component a little lower.

If the system deviation does not decrease, reduce the integral component a little. If the performance becomes unstable as a result, reduce the P component.

- Repeat this process until you have found the correct parameter settings.

Note about the AVR function

If you have configured the AVR function (PNU A081) to 02 so that it is deactivated only during deceleration when PID control is active, there is, depending on the application, a danger that the motor will "knock". In other words, instead of running smoothly, the motor accelerates and decelerates alternately. In this case, set the AVR function to 01 (OFF).

Application examples

This section contains some setting examples of practical applications.

Flow control

In the example shown in the figure below, the setpoint values are $150 \mathrm{~m}^{3} / \mathrm{min}$ and $300 \mathrm{~m}^{3} / \mathrm{min}$:

Figure 143: Examples for flow control
w: Setpoint value, 4-bit digital
x: Feedback actual value ($500 \mathrm{~m}^{3} / \mathrm{min}$ at 20 mA)
B1: Measured value converter
P1: Flow sensor
(1) Pump

PNU	Meaning in PID control mode	Value	Notes
F001	Setpoint	150	Direct input of " $150 \mathrm{~m} 3 / \mathrm{min}^{\prime}$, since the scaling factor has been set
A001	Frequency setpoint input	02	Keypad
A011	Feedback percentage actual value for lower acceptance threshold (units: \%)	0	0 \%
A012	Feedback percentage actual value for upper acceptance threshold (units: \%)	100	100 \%
A013	Lower acceptance threshold for voltage or current on the actual value input (in \%)	20	20 \%
A014	Upper acceptance threshold for voltage or current on the actual value input (in \%)	100	100 \%
A021	Digitally adjustable setpoint value 1	300	$300 \mathrm{~m} / \mathrm{min}$
A071	PID control active/inactive	01	PID mode active
A072	P component of the PID control	-	Application dependent
A073	I component of the PID control	-	
A074	D component of the PID control	-	
A075	Setpoint factor of the PID control	5.0	100% at $500 \mathrm{~m}^{3} / \mathrm{min}$
A076	Input actual value signal for PID control	00	Feedback from OI-L terminal

Temperature control

With the flow control in the previous example, the frequency inverter's output frequency increases if the feedback signal is less than the setpoint and falls if the feedback signal is greater than the setpoint. With temperature control, the opposite behaviour must
be implemented: if the temperature is above the setpoint, the inverter must increase its output frequency to increase the speed of the connected fan.

The following figure contains an example for temperature control with the two setpoints 20 and $30^{\circ} \mathrm{C}$:

Figure 144: Example of temperature control
w: Setpoint value, 4 Bit digital
x: Feedback actual value ($50^{\circ} \mathrm{C}$ at 10 V)
B 1 : Measured value converter
P1: Temperature sensor
(1) Fan

PNU	Meaning in PID control mode	Value	Notes
F001	Setpoint	20	Direct input of " $20^{\circ} \mathrm{C}$ ", as the scaling factor has been set
A001	Frequency setpoint input	02	Keypad
A011	Feedback percentage actual value for lower acceptance threshold (units: \%)	100	100 \%
A012	Feedback percentage actual value for upper acceptance threshold (units: \%)	0	0 \%
A013	Lower acceptance threshold for voltage or current on the actual value input (in \%)	0	0 \%
A014	Upper acceptance threshold for voltage or current on the actual value input (in \%)	100	100%
A021	Digitally adjustable setpoint value 1	30	$30^{\circ} \mathrm{C}$
A071	PID control active/inactive	01	PID mode active
A072	P component of the PID control	-	Application dependent
A073	I component of the PID control	-	
A074	D component of the PID control	-	
A075	Setpoint factor of the PID control	0.5	100% at $50^{\circ} \mathrm{C}$
A076	Input actual value signal for PID control	01	Feedback from 0-L terminal

Automatic voltage regulation (AVR)

The AVR function stabilizes the motor voltage if there are fluctuations on the DC bus voltage. These deviations result from, for example

- unstable mains supplies or
- DC bus voltage dips or peaks caused by short acceleration and deceleration times.

A stable motor voltage provides a high level of torque, particularly during acceleration.

Regenerative motor operation (without AVR function) results in a rise in the DC bus voltage in the deceleration phase (particularly with very short deceleration times), which also leads to a corresponding rise in the motor voltage. The increase in the motor voltage causes an increase in the braking torque. Under PNU A081, you can therefore deactivate the AVR function for deceleration.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A081	Characteristic of the AVR function	-	-	00	AVR function active during entire operation.	02
				01	AVR function is not active.	
				02	AVR function active during operation except for deceleration	
A082	Motor voltage for AVR function	-	-	$\begin{aligned} & 380,400,415, \\ & 440,460,480 \end{aligned}$	400 V series: $380,400,415,440,460,480 \mathrm{~V}$	400

If the mains voltage is higher than the rated motor voltage, enter the mains voltage under PNU A082 and reduce the output voltage under PNU A045 to the rated motor voltage.

Example: At 440 V mains voltage and 400 V rated motor voltage, enter, under PNU A082 the value 440 and, under PNU A045, the value $91 \% ~(=400 / 440 \times 100 \%$).

Energy-saving mode

Energy-saving mode is intended especially for pump and fan applications with reduced torque characteristics. In this mode, the output voltage is automatically adapted to the motor load, thereby drawing no more energy from the mains than required for operation.

When you enter the value 01 under PNU A085, you can adapt the response time of the energy-saving mode under PNU A086. A short response time achieves more accurate, and a long response time less accurate voltage matching.
The value 02 under PNU A085 activates fuzzy logic optimized energy-saving.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A085	Energy-saving mode	-	-	00	Energy-saving mode not active	00
				01	Energy-saving mode active	
				02	Energy-saving mode with active fuzzy logic	
A086	Response time	\checkmark	\checkmark	0 to 100 s	Response time for voltage matching	50.0

Time ramps

During operation, you can change over from the time ramps set under PNU F002 and F003 to those programmed under PNU A092 and A093. You can do this either by applying an external signal to input 2 CH at any time or when the frequencies configured under PNU A095 and A096 are reached.

Figure 145: Time ramps
t_{1} : Acceleration time 1
t_{2} : Acceleration time 2

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { A092 } \\ & \text { A292 } \\ & \text { A392 } \end{aligned}$	Second acceleration time	\checkmark	\checkmark	0.01 to 3600 s	Setting times for the second acceleration and deceleration time 0.1 to 999.9 s; resolution: 0.1 s	15
$\begin{aligned} & \text { A093 } \\ & \text { A293 } \\ & \text { A393 } \end{aligned}$	Second deceleration time				1000 to 3000 s ; resolution: 1 s	
$\begin{aligned} & \text { A094 } \\ & \text { A294 } \end{aligned}$	Changeover from the first to the second time ramp	-	-	00	Changeover to the second time ramp if an active signal is present on a 2 CH digital input.	00
				01	Changeover to the second time ramp when the frequencies entered in PNU A095 and/or A096 are reached	
$\begin{aligned} & \hline \text { A095 } \\ & \text { A295 } \end{aligned}$	Acceleration time changeover frequency	-	-	$\begin{aligned} & \hline 0.00 \mathrm{to} \\ & 400.0 \mathrm{~Hz} \end{aligned}$	Here, set a frequency at which the changeover from the first to the second acceleration time is to take place.	0.0
$\begin{aligned} & \hline \text { A096 } \\ & \text { A296 } \end{aligned}$	Deceleration time changeover frequency	-	-	$\begin{aligned} & \hline 0.00 \text { to } \\ & 400.0 \mathrm{~Hz} \end{aligned}$	Here, set a frequency at which the changeover from the first to the second deceleration time is to take place.	0.0

Acceleration and deceleration characteristics

Under PNU A097, define the characteristic of the acceleration ramp. This applies to the first and second time ramp. You can choose between four options (\rightarrow Fig. 146):

- Linear acceleration, value 00 (default)
- S-curve characteristic for acceleration, value 01
- U-curve characteristic for acceleration, value 02
- Inverted U-curve characteristic for acceleration, value 03

Figure 146: Acceleration characteristics

Under PNU A098, define the characteristic of the deceleration ramp in the same way as for acceleration (\rightarrow Fig. 147):

- Linear deceleration, value 00 (default)
- S-curve characteristic for deceleration, value 01
- U-curve characteristic for deceleration, value 02
- Inverted U-curve characteristic for deceleration, value 03

Figure 147: Deceleration characteristics

In addition, you can define the curvature of the S - and U -curve characteristics. Ten values are available for this purpose. Value 01 means the smallest curvature, value 10 the greatest
$(\rightarrow$ Fig. 148). PNU A131 contains the curvature for acceleration, PNU A132 the curvature for deceleration.

Figure 148: Curvature of the S - and U -curve characteristics

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
A097	Acceleration characteristic	-	-	00	Linear acceleration of the motor at the first and second time ramps	00
				01	S-curve characteristic for acceleration of the motor at the first and second time ramps	
				02	U-curve characteristic for acceleration of the motor at the first and second time ramps	
				03	Inverted U-curve characteristic for acceleration of the motor at the first and second time ramps	
A098	Deceleration characteristic	-	-	00	Linear deceleration of the motor at the first and second time ramps	00
				01	S-curve characteristic for deceleration of the motor at the first and second time ramps	
				02	U-curve characteristic for deceleration of the motor at the first and second time ramps	
				03	Inverted U-curve characteristic for deceleration of the motor at the first and second time ramps	
A131	Curvature of acceleration characteristic	-	\checkmark	01	Smallest curvature of the acceleration ramp	02
				...		
				10	Largest curvature of the acceleration ramp	
A132	Curvature of deceleration characteristic	-	\checkmark	01	Smallest curvature of the deceleration ramp	02
				...		
				10	Largest curvature of the deceleration ramp	

Automatic restart after a fault

Warning!

When a fault has occurred, this function initiates an automatic restart of the frequency inverter if a start signal is present after the set waiting time has expired. Make sure that an automatic restart does not present a danger to personnel.

With the default settings, each fault triggers a fault message. An automatic restart is possible after the following fault messages have occurred:

- Overcurrent (E01 to E04, up to four restart attempts within ten minutes before a fault message is issued)
- Overvoltage (E07 and E15, up to three restart attempts within ten minutes before a fault message is issued)
- Undervoltage (E09 and E16, up to 16 restart attempts within ten minutes before a fault message is issued)

Under PNU b001, define the restarting behaviour.
With PNU b002 and b003, define the behaviour on failure of the power supply (\rightarrow Fig. 149 and Fig. 150).

Figure 149: Duration of power supply failure shorter than defined under PNU b002
$\Delta U_{\mathrm{LN}}:$ Supply voltage
ΔU_{2} : Output voltage
n_{M} : Motor speed
t_{0} : Duration of supply failure
(1) Free run stop (coasting)

Under PNU b007, define the frequency threshold below which the frequency inverter accelerates the motor from 0 Hz on a restart

Figure 150: Duration of power supply failure greater than defined under PNU b002
$\Delta U_{\text {LN }}$:Supply voltage
ΔU_{2} :Output voltage
n_{M} : Motor speed
t_{0} : Duration of supply failure
(1) Free run stop (coasting)

Under PNU b004, define how the DV6 frequency inverter responds to an intermittent power supply failure or undervoltage.
With PNU b005, define whether the DV6 frequency inverter attempts a restart up to 16 times or indefinitely in the event of an intermittent power supply failure or undervoltage.

With PNU b006, you can activate phase failure detection. This function can not be used if an RFI filter is installed upstream of the frequency inverter.
(\rightarrow Fig. 151 and Fig. 152).

Figure 151: Motor frequency higher than set under PNU b007
$\Delta U_{\text {LN }}$:Supply voltage
ΔU_{2} : Output voltage
n_{M} : Motor speed
t_{0} : Duration of supply failure
(1) Free run stop (coasting)

Figure 152: Motor frequency lower than set under PNU b007
$\Delta U_{\text {LN }}$:Supply voltage
ΔU_{2} : Output voltage
n_{M} : Motor speed
t_{0} : Duration of supply failure
(1) Free run stop (coasting)

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b001	Restart mode	-	\checkmark	00	The above fault messages are displayed when the associated fault occurs (restart is not activated).	00
				01	A restart takes place at the starting frequency after the time set under PNU b003 has elapsed.	
				02	After the time set under PNU b003 has elapsed, the frequency inverter synchronizes to the current motor rotation speed and the motor accelerates for the set acceleration time.	
				03	After the time set under PNU b003 has elapsed, the inverter synchronizes to the current motor rotation speed and the motor brakes for the set deceleration time. A fault message is then displayed.	
b002	Permissible power failure duration	-	\checkmark	0.3 to 1.0 s	Here, set a time duration for which the undervoltage condition is met without the corresponding fault message in E09 being issued.	1.0
b003	Waiting time before restart	-	\checkmark	0.3 to 100 s	Here, set a time which is to expire before an automatic restart is initiated after a fault signal. This time can be used in conjunction with the FRS function. During the waiting time, the following message appears on the LED display:	1.0
b004	Fault message issued immediately	-	\checkmark	00	In the event of an intermittent power supply failure or undervoltage, the frequency inverter does not go into fault status.	00
				01	In the event of an intermittent power supply failure or undervoltage, the frequency inverter goes into fault status.	
				02	In the event of an intermittent power supply failure or undervoltage at standstill or during deceleration, the frequency inverter does not go into fault status.	
b005	Number of restart attempts	-	\checkmark	00	16 restart attempts at intermittent supply failure or undervoltage.	00
				01	The number of restart attempts is not limited.	
b006	Mains phase failure detection ${ }^{1)}$	-	\checkmark	00	Inactive	00
				01	Active	
b007	Synchronization frequency	-	\checkmark	0 to 400 Hz	When the frequency corresponding to the motor speed is higher than the frequency programmed here, the frequency inverter synchronizes itself with the motor speed and accelerates to the setpoint value. When the frequency corresponding to the motor speed is lower than the frequency programmed here, the frequency inverter starts at 0 Hz .	0.00

[^2]
Electronic motor protection

Using an electronically simulated bimetallic strip, the DV6 frequency inverters can provide thermal monitoring of the connected motor. With PNU b012, you can match the electronic motor protection to the full load current of the motor. If the values entered here exceed the rated motor current, the motor cannot be monitored with this function. In this case, PTC thermistors or bimetal contacts in the motor windings must be used.

Caution!

At low motor speeds, the output of the motor cooling fan is diminished, and the motor may overheat despite its overload protection. You should therefore provide protection with PTC thermistors or bimetal contacts.

Let us assume you have a DV6-340-11K. The motor full load current is 23 A . The setting range goes from $4.6 \mathrm{~A}=0.2 \times 23 \mathrm{~A}$ to $27.6 \mathrm{~A}=1.2 \times 23 \mathrm{~A}$. Figure 153 shows the tripping characteristic when PNU b012 contains the value 23 .

Figure 153: Tripping current characteristic at $I_{\mathrm{e}}=23 \mathrm{~A}$

Use PNU b013 to match the overload protection to your load conditions. You have three options (\rightarrow Fig. 154 to Fig. 156):

- Increased overload protection; value: 00
- Normal overload protection; value: 01 (default)
- Adjustable overload protection; value: 02

Figure 154: Increased overload protection (PNU b013 = 00)

Figure 155: Normal overload protection (PNU b013 = 01)

Figure 156: Adjustable overload protection (PNU b013 = 02)

Tripping characteristics at increased overload protection

With increased overload protection (PNU b013 = 00), the tripping current is reduced, for example, by 80% at $20 \mathrm{~Hz}(\rightarrow$ Fig. 154). Accordingly, the tripping characteristic is offset to smaller current values (\rightarrow Fig. 157).

Figure 157: Tripping characteristic for increased overload protection at 20 Hz and $I_{\mathrm{e}}=23 \mathrm{~A}$

Tripping characteristic at normal overload protection

With normal overload protection (PNU b013 = 01), the tripping current is reduced, for example, by 90% at $2.5 \mathrm{~Hz}(\rightarrow$ Fig. 155). Accordingly, the tripping characteristic is offset to smaller current values (\rightarrow Fig. 158) .

Figure 158: Tripping characteristic for constant overload protection at 2.5 Hz and $I_{\mathrm{e}}=23 \mathrm{~A}$

Tripping characteristic at adjustable overload protection

Here, you can freely select the tripping characteristic (PNU b013 = 02) by entering the appropriate currency and frequency coordinates under PNU b015 to b020 (\rightarrow Fig. 156).
These must be within the limits shown (\rightarrow Fig. 159).

Figure 159: Setting range for the adjustable overload protection
(1) Setting range

The tripping curve then has the following characteristic, represented by the frequency set under PNU b018 (\rightarrow Fig. 160).

Figure 160: Tripping characteristic for adjustable overload protection using PNU b018

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { b012 } \\ & \text { b212 } \\ & \text { b312 } \end{aligned}$	Tripping current for electronic motor protection device	-	\checkmark	$\begin{aligned} & 0.2 \text { to } 1.2 \times \\ & I_{\mathrm{e}}{ }^{11)} \end{aligned}$	Setting range of the tripping current as a multiple of the frequency inverter rated current, i.e. the range is given in amperes (A).	$I_{\mathrm{e}}{ }^{1)}$
$\begin{aligned} & \text { b013 } \\ & \text { b213 } \\ & \text { b313 } \end{aligned}$	Characteristic for electronic motor protection device	-	\checkmark	The electronic thermal protection of the motor in the low speed range can be increased to improve thermal monitoring of the motor at low frequencies.		01
				00	Enhanced motor protection	
				01	Normal overload protection	
				02	Adjustable under b015 to b020	
b015	Frequency 1	-	\checkmark	0.0 to 400 Hz	Frequency 1 for electronic motor protection device	0
b016	Tripping current 1	-	\checkmark	$\begin{aligned} & \hline 0.0 \mathrm{to} \\ & 1000 \mathrm{~A} \end{aligned}$	Tripping current 1 for electronic motor protection device	0.0
b017	Frequency 2	-	\checkmark	0.0 to 400 Hz	Frequency 2 for electronic motor protection device	0
b018	Tripping current 2	-	\checkmark	$\begin{aligned} & 0.0 \text { to } \\ & 1000 \mathrm{~A} \end{aligned}$	Tripping current 2 for electronic motor protection device	0.0
b019	Frequency 3	-	\checkmark	0.0 to 400 Hz	Frequency 3 for electronic motor protection device	0
b020	Tripping current 3	-	\checkmark	$\begin{aligned} & 0.0 \text { to } \\ & 1000 \mathrm{~A} \end{aligned}$	Tripping current 3 for electronic motor protection device	0.0

1) Inverter rated current

Current limit

With the current limit setting, the motor current can be limited. To reduce the load current, the frequency inverter ends the frequency increase in the acceleration phase or reduces the output frequency during static operation as soon as the output current rises above the current limit set with this function, (the time constant for control at the current limit is defined under PNU b023 or b026). As soon as the output current drops below the set current limit, the frequency increases again to the configured setpoint value. The current limit can be deactivated for the acceleration phase, so that higher currents for acceleration are allowed for brief periods $(\rightarrow$ PNU b021 or b024).
With PNU b024 to b026, you can program a second current limit, which can be called up through digital input OLR $(\rightarrow$ Section "Change over current limit (OLR)", Page 90).

The current limit can not prevent a fault message being issued and the frequency inverter being switched off due to a sudden overcurrent, for example caused by a short circuit.

Figure 161: Current limit
I_{M} : Motor current
I_{1} : Current limit

Caution!

Note that the current limit cannot prevent a fault message and shutdown due to a sudden overcurrent (e.g. caused by a short-circuit).

| PNU | Name | Adjustable in RUN mode
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b021 | Current limit
 characteristic 1 | - | \checkmark | | | Motor current limit not active |

| PNU | Name | Adjustable in RUN mode
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b024 | Current limit
 characteristic 2 | - | \checkmark | | | Motor current limit not active |

1) Inverter rated current

Parameter protection

Under PNU b031, you can specify whether you want to use the normal or extended parameter setting features in RUN mode. If you set the value 10 under PNU b031, further parameters are available which can be modified in the RUN mode. These additional parameters are marked " $\sqrt{ }$ " in the Extended column.

The five following methods of parameter protection are available:

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b031 | Software
 parameter
 protection | - | \checkmark | 00 | Parameter protection through SFT input;
 all functions inhibited | 01 |

Controlled deceleration

Normally, in the event of a power failure or an Emergency-Stop, the motor coasts to a halt without frequency inverter control. In some applications, however, it is necessary to control the motor's deceleration. This function is provided for such cases.
To use this function, the power supply for connections R0 and T0 must be changed.

Warning!

Before working on the DV6, isolate the device from its power supply. Risk of fatal injury from electrical current.

By default, terminals R0 and T0 are connected to phases L1 and L3 through connector J51 $(\rightarrow$ Fig. 162).

Figure 162: Default connection of terminals R0 and T0
SMPS: DV6 control electronics

For controlled deceleration to work, you must connect terminals RO and TO to DC+ and DC- (\rightarrow Fig. 163).

Figure 163: Connecting terminals RO and TO to DC+ and DC-
SMPS: DV6 control electronics

Proceed as follows:

- Release the two screws of terminals R0 and TO. Remove connector J51 with the cable from the circuit board (retain the plug).

Figure 164: Disconnect J51 from terminals R0 and T0

- Connect a cable to terminal R0, which is long enough to reach terminal DC+ (do not connect yet).
- Connect a cable to terminal T0, which is long enough to reach terminal DC- (do not connect yet).
- Remove the ferrite rings from the connector cable (J51) and guide the new cable through the ferrite rings.

Figure 165: Remove the ferrite rings.

- Twist the two cables with each other.
- Connect terminal R0 to DC+ and terminal T0 to DC-.

With this wiring arrangement, the motor can feed the frequency inverter's control electronics when the power supply is switched off.

If the mains power fails during controlled deceleration (PNU b050 = 01), deceleration starts as soon as the internal DC link voltage $\Delta U_{D C}$ falls below the threshold set under PNU b051. To ensure that the control electronics are supplied with power, the current output frequency f_{0} is reduced by the frequency jump set under PNU b054. The motor then runs in regenerative mode and feeds the internal $D C$ link voltage $\Delta U_{D C}$. Deceleration now takes place after the set deceleration ramp (PNU b053). If, due to a high mass inertia, the internal $D C$ link voltage $\Delta U_{D C}$ becomes excessively high, the deceleration ramp is interrupted until the voltage falls below the threshold defined under PNU b052.

Figure 166: Function chart for controlled deceleration
$\Delta U_{\mathrm{DC}}:$ Internal DC link voltage
$\Delta U_{u v}: V o l t a g e ~ t h r e s h o l d ~ f o r ~ t h e ~ c o n t r o l ~ e l e c t r o n i c s ~$
f_{0} : Output frequency

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b050	Controlled deceleration	-	-	00	Controlled deceleration is not active.	00
				01	Controlled deceleration is active.	
b051	Starting voltage for deceleration	-	-	0 to 1000 V	When the internal DC link voltage falls below this value, controlled deceleration starts	0.0
b052	Voltage for ramp stop	-	-	0 to 1000 V	When the internal DC link voltage rises again, the deceleration ramp PNU b053 is interrupted.	0.0
b053	Deceleration time	-	-	0.01 to 3600 s	During this time, the motor is decelerated.	1.00
b054	Frequency jump	-	-	$\begin{aligned} & 0.00 \mathrm{to} \\ & 10.00 \mathrm{~Hz} \end{aligned}$	The frequency inverter reduces the output voltage by this value so that the motor works in regenerative mode.	0.00

Other functions

Inhibit direction of rotation

Under PNU b035, you can specify whether clockwise or anticlock-
wise motor operation is permitted.

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | Value | Function | WE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| b035 | Inhibit direc-
 tion | - | - | 00 | Motor can run in both directions | 00 |
| | | | 01 | Motor can only run clockwise | | |

Starting behaviour

With the two parameters PNU b036 and b082, you can specify the voltage ramp and the frequency for starting the motor.

Voltage ramp

If the overcurrent trip is triggered at an increased starting frequency, you can reduce the starting current and the torque with PNU b036.

Figure 167: Function chart for voltage ramp reduction
f_{0} : Output frequency
ΔU_{2} :Output voltage

Starting frequency

Under PNU b082, you can set the frequency at which the motor is to start.

Figure 168: Function chart for starting frequency
f_{0} : Output frequency
ΔU_{2} :Output voltage

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b036	Voltage ramp to starting frequency	-	\checkmark	00	Start without voltage reduction.	06
				01	Minimum voltage reduction, approx. 6 ms	
				...		
				06	Maximum voltage reduction, approx. 36 ms	
b082	Increased starting frequency	-	\checkmark	0.1 to 9.99 Hz	The motor starts with this frequency.	0.5

Display mode

With this function, you can specify the parameters which the DV6 displays. Only these displayed parameters can then be changed:

- All parameters: PNU b037 = 00 (default)
- Parameters which are relevant to the programmed parameters: PNU b037 = 01
- Only the parameters saved under PNU U001 to U012: PNU b0037 $=02(\rightarrow$ Section "User-defined parameters parameter group U", Page 176)

All parameters: PNU b037 = 00 (default)

By default, the DV6 displays all parameters and all parameters can be changed.

Relevant parameters: PNU b037 = 01

With this setting, the DV6 displays only those parameters which are connected with ones that are already programmed. If, for example you set a constant $\Delta U / f$ characteristic under PNU A044 (default value: 00), the parameters for an adjustable $\Delta U / f$ characteristic are not shown (PNU b100 to b113). The table below shows, which parameters are hidden when this option is set.

PNU	Value	PNUs which are hidden when PNU b037 is set to 01	Function
A001	01	A005, A006, A011 to A016, A101 to A105, A111 to A114, C081 to C083, C121 to C123	Analog inputs 0, 01, 02
A002	01, 03, 04, 05	b087	OFF key disabled
A019	00	A028 to A035	Fixed frequencies
C001 to C008	02, 03, 04, 05		
A044, A244	02	b100 to b113	Voltage and frequency characteristic
A051	01	A052 to A059	DC braking
A071	01	A072 to A076, C044	PID control
A094	01	A095 to A096	Second time ramp
A294	01	A295 to A296	
b013, b213, b313	02	b015 to b020	Electronic motor protection
b021	01, 02	b022, b023	Overcurrent limit
b024	01,02	b025, b026	Overcurrent limit 2
b095	01, 02	b090, b096	BRD function
C001 to C008	06	A038, A039	Jog mode
	08	F202, F203, A203, A204, A220, A241 to A244, A261, A262, A292 to A296, b212, b213, H202 to H206, H220 to H224, H230 to H234, H250 to H252, H260	Second parameter set
	11	b088	Motor shutdown and free run stop
	17	F302, F303, A303, A304, A320, A342 to A344, A392, A393, b312, b313, H306	third parameter set
	18	C102	Reset
	27, 28, 29	C101	Acceleration/deceleration motor potentiometer
A044	00, 01	A041 to A043	Voltage boost function
	04	H060	0 Hz limitation
A244	00, 01	A241 to A243	Voltage boost function
	04	H260	0 Hz limitation
A044	03, 04, 05	b040 to b046, H001, H002, H005, H02O to H024, H030 to H034, H050 to H052, H060, H070 to H072	
A244	03, 04	b040 to b046, H2O2, H205, H220 to H224, H230 to $\mathrm{H} 234, \mathrm{H} 250$ to $\mathrm{H} 252, \mathrm{H} 260, \mathrm{H} 070$ to H 072	
A097	01, 02, 03	A131	Curvature of acceleration ramp
A098	01, 02, 03	A132	Curvature of acceleration ramp

PNU	Value	PNUs which are hidden when PNU b037 is set to 01	Function
b098	01, 02	b099, C085	Thermistor function
b050	01	b051 to b054	Behaviour on power failure
b120	01	b121 to b126	Brake control
C021 to C025, C026	02, 06	C042, C043	Frequency reached signal
	03	C040, C041	Overcurrent signal
	07	C055 to C058	Overload
	21	C063	0 Hz signal
	24, 25	C045, C046	Frequency reached signal
	26	C111	Overload signal 2

Parameters U001 to U012, PNU b037 = 02
In parameter group U, you can save any twelve parameters
\rightarrow Section "User-defined parameters - parameter group U",
Page 176), When you set PNU b037 to 02, only these and
PNU b037 are shown.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
b037	Display mode	-	\checkmark	00	All parameters are shown.	00
			02	Only relevant parameters are shown. Only PNU b037 and the parameters entered in PNU U001 to U012 are shown.		

Pulse frequency

High pulse frequencies result in less motor noise and lower power losses in the motor but a higher dissipation in the power amplifiers and more noise in the mains and motor cables. You should therefore set the pulse frequency as low as possible.

During DC braking, the pulse frequency is automatically reduced to 1 kHz .

PNU	Name	Adjustable in RUN mode		Value	WE
		Normal	Extended		
b083	Pulse frequency	-	-	$\begin{aligned} & \hline 0.5 \mathrm{to} \\ & 15 \mathrm{kHz} \end{aligned}$	5

Initialization

Two different types of initialization are available:

- Clearing the fault history register
- Restoring the default parameter settings

To delete the fault history register or to restore the factory default settings, proceed as follows:

- Make sure, that PNU b085 contains the value 01.
- Under PNU b084 (initialization), enter 00, 01 or 02
- Press the ENTER key to save the value.
- On the keypad, press both arrow keys and the PRG key at the same time and keep them pressed.
- While holding the arrow and PRG keys, briefly press the OFF key.
- Now release all keys again. The display shows del.

Initialization is now complete.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b084	Initialization	-	-	00	Clearing the fault history register	00
				01	Restoring the factory default settings	
				02	Deleting the fault history register and restoring the default settings	

Country version

Here, define the country-specific parameter set which will be loaded during initialization (\rightarrow PNU b084).

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
b085	Country version	-	-	00	Japan	01
			01	Europe		
				USA		

Frequency factor for display through PNU d007

The product of the output frequency and this factor is displayed under PNU d007.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
b086	Frequency factor	\checkmark	\checkmark	0.1 to 99.9	The product of the value displayed under PNU d001 and this factor is displayed at PNU d007. This value is also available at the FM terminal.	1.0

Inhibit of the OFF key

The OFF key located on the keypad or remote operating unit can be inhibited here.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE
b087	OFF key disabled	-	\checkmark	00	OFF key always active

Motor restart after cancellation of the FRS signal

Activation of the digital input configured as FRS (free run stop: coasting) causes the inverter to shut down, leaving the motor to coast freely. Two options are available to determine the frequency inverter's behaviour after deactivation of the FRS input.

PNU	Name	Adjustable in RUN mode Normal Extended	Value	Function	WE	
b088	Motor restart after removal of the FRS signal	-	-	00	0 Hz restart after deactivation of the FRS input	00

Controlling the built-in braking transistor

The DV6 has built-in braking transistor, which is controlled with the following parameters.

Relative permissible duty factor of the built-in braking transistor
Enter the permissible relative duty factor of the DV6's built-in braking transistor here. The value entered here is a percentage of the longest permissible (continuous) total running time of the braking transistor, which is 100 s .

Using an example of three braking operations within 100 seconds, the illustration below shows the effect of the relative duty factor: The current relative duty factor T in this example is 44%.

If, for example, you set PNU b090 to 40%, a fault message is issued.

Figure 169: Example: Braking duration
y: Braking

If the braking transistor is operated for a longer period than the value entered here, fault message E06 is issued.

The assigned external Braking resistor must not fall below the following minimum values:

DV6-340-	Assigned rating at $\mathbf{4 0 0} \mathrm{V}$	Minimum resistance at DF $=\mathbf{1 0 \%}$ Ω	Minimum resistance at DF $=\mathbf{1 0 0} \%$ Ω
075	0.75	100	300
1 K 5	1.5	100	300
2 K 2	2.2	100	300
4 KO	4.0	70	200
5 KK 5	5.5	70	200
7 K 5	7.5	50	150
11 K	11.0	50	150

Connect the external braking resistor to terminals BR and DC+. The maximum cable length between frequency inverter and braking resistor must not be greater than five metres.
If you are using an external braking device, enter 0% under PNU b090 and remove any external braking resistors at terminals

Under PNU b095, specify when the built-in braking transistor is to operate.

Under PNU b096, set the voltage threshold at which the built-in braking transistor becomes active.
$B R$ and $D C$.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b090	Relative permissible duty factor of the built-in braking transistor	-	\checkmark	0 to 100%	To deactivate the relative permissible duty factor of the built-in braking transistor, enter 0 \%.	0
b095	Enable built-in braking transistor	-	\checkmark	00	Do not enable braking transistor	00
				01	Enable braking transistor in RUN mode	
				02	Always enable braking transistor	
b096	Voltage threshold of built-in braking transistor	-	\checkmark	660 to 760 V	With PNU b095 = 01 or 02, the built-in braking transistor is switched in when the internal DC link voltage reaches this value.	720

Type of motor stop

Specify here, how the motor is to decelerate when the OFF button is pressed:

PNU	Name	Adjustable in RUN mode Normal Extended		Value	Function	WE
b091	Type of motor stop	-	-	00	Deceleration using the deceleration ramp	00
			01	Free run stop (coasting)		

Fan control

With PNU b092, you can specify when the fan will operate.
If you enter the value 01 here, the fan runs for one minute after the frequency inverter power supply is switched on, allowing you to make sure that the fan is working correctly. The fan also continues to run for five minutes after the connected motor has stopped to dissipate residual heat.

| PNU | Name | Adjustable in RUN mode
 Normal
 Extended | | Value | Function | WE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | - | 00 | Fan is always switched on | 00 |
| b092 | Fan control | - | 01 | Fan is switched on only while the connected motor is
 running. | | |

Debug mode

Under PNU C091, set debug mode.

| PNU | Name | $\begin{array}{l}\text { Adjustable in RUN mode } \\ \text { Normal } \\ \end{array}$ | | | Extended |
| :--- | :--- | :--- | :--- | :--- | :--- |$)$

Controlling an external brake

You can use the DV6 frequency inverter to control an external brake, which is needed where heavy loads are to be lifted, for example in lift and crane applications. When an external brake is
employed, you should use the SLV (sensorless vector) or 0 Hz SLV control mode, which can provide a higher torque (\rightarrow Section "Voltage/frequency characteristic and voltage boost", Page 126).

Figure 170: Brake control
G1:Frequency inverter
K1: Brake ON
K2: Emergency brake or alarm system
Y1: Brake

- To control an external brake, enter 01 in PNU b120 (brake control active).

The brake control on startup consists of the following steps (\rightarrow Fig. 171). The brake is activated after the frequency inverter applies a frequency to the motor:

- When the frequency inverter receives a start signal, it accelerates the motor at the defined starting ramp to the frequency at which the brake is enabled (PNU b125).
- The Release Brake confirmation waiting time set under PNU b121 begins.
- When the waiting time set under PNU b121 has expired, one of two things happens:
- The Brake Enable current (PNU b126) was reached:

The digital output configured as BRK is activated (release brake).

- The Brake Enable current (PNU b126) was not reached: The digital output configured as BER is activated (brake fault).
- As soon as the BRK signal (release brake) is issued to the external brake, the Braking Confirmation waiting time set under PNU b124 begins. During this time, the frequency inverter waits
for confirmation that the brake has been released. The confirmation must activate one of digital inputs 1 to 8 which has been configured as BOK.
- If the BOK input is activated within the Brake Confirmation wait time set under PNU b124, the waiting time for acceleration defined under PNU b122 begins.
- After the waiting time set under PNU b122, the frequency inverter accelerates the motor to the setpoint frequency.
- If, during the Brake Confirmation waiting time in PNU b124, the BOK input is not activated (i.e. the brake has not released), the following happens:
- The BRK output (release brake) is deactivated.
- The BER output (brake fault) is activated.
- The DV6 frequency inverter issues fault message E32.

Warning!

When the frequency inverter issues a fault message, it also switches the output to the motor controller. In this case, the motor is not stopped by the frequency inverter. For applications in which safety is an issue, you must therefore provide an emergency brake.

When a stop signal is issued, the DV6 frequency inverter does the following (\rightarrow Fig. 171). The brake is activated before the motor
has come to a standstill:

- The DV6 frequency inverter decelerates the motor down to the brake release frequency (PNU b125).
- The BRK output (release brake) is deactivated, i.e. the brake should engage.
- The waiting time set under PNU b124 starts and the frequency inverter continues to output the same frequency (PNU b125).
- Within this time, the external brake must deactivate the BOK input.
If the BOK input is not deactivated, the frequency inverter activates the BER output and issues fault message E36.
- As soon as the BOK input is deactivated, the waiting time before Stop set under PNU b123 begins.
- When the waiting time in PNU b123 has expired, the frequency inverter decelerates the motor to 0 Hz .

Figure 171: Brake control function chart

- Program one of the digital inputs 1 to 8 as BOK by setting the corresponding PNU (C001 to C008) to 44.
- Program one of the digital outputs 11 to 15 as BRK by setting the corresponding PNU (C021 to CO25) to 19.
- Program one of the digital outputs 11 to 15 as BER by setting the corresponding PNU (C021 to C025) to 20.
- Program PNU b121 to b126 according to your application.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
b120	Brake control	-	\checkmark	00	Inactive	00
				01	Active	
b121	Brake released confirmation waiting time			0 to 5 s	This is the time which the DV6 waits after the Enable frequency (PNU b125) is reached before activating the output configured as BRK (release brake).	0.00
b122	Waiting time before acceleration			0 to 5 s	This is the time which the DV6 waits after activating the input configured as BOK before accelerating the motor to the setpoint frequency.	0.00
b123	Waiting time before stop			0 to 5 s	This is the time which the DV6 waits after deactivating the input configured as BOK before decelerating the motor to 0 Hz .	
b124	Confirm Braking wait time			0 to 5 s	During this time, the confirmation that the brake has been applied must reach the BOK input. Otherwise, the DV6 deactivates the BRK output, activates the BER output (brake fault) and issues fault message E36.	
b125	Brake enable frequency			0 to 400 Hz	At this frequency, the DV6 activates the digital output configured as BRK after the waiting time set under PNU b121.	
b126	Brake enable current			0 to $2 \times I_{\text {e }}$	Minimum current required to activate the output configured as BRK.	$I_{\text {e }}$

SLV and autotuning

This section describes the function of the SLV (sensorless vector) control and how to automatically determine motor data with the autotuning function.

SLV (sensorless vector control)

SLV control can be used instead of the U/f characteristic to obtain even higher torques at lower speeds and to achieve an even greater speed stability, and therefore even steadier motor operation.

To achieve this, the present motor current and motor voltage are used to calculate the magnetization current (machine flux-generating component) and the resistive current (torque-generating component). In combination with the motor constants defined by the motor type (which you can either configure manually or determine automatically with autotuning), these two current components are sufficient for an optimal motor control.

The actual control is implemented with a powerful microprocessor built into the frequency inverter. Even though SLV control does not require actual motor speed feedback, (hence the term "sensorless"), it is nearly as powerful as vector control with motor speed feedback.

You can choose between two versions of SLV control:

- Standard SLV control
- 0 Hz range SLV control

Standard SLV control

Before you can use standard SLV control, you need to make the following settings:

- Under PNU A044 (or PNU A244 for the second parameter set), enter the value $03(\rightarrow$ Section "Voltage/frequency characteristic and voltage boost", Page 126).
- Under PNU H002 (or PNU H2O2), specify whether the standard motor data (value 00), the standard autotuning data (value 01) or the adaptive autotuning data (value 03) will be used.

To use the standard autotuning data in the second parameter set, enter the value 01 under PNU H2O2.

The adaptive autotuning data is only available for the first parameter set.

Motor data	Parameter set		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Standard motor data	\checkmark	\checkmark	\checkmark
Autotuning motor data	\checkmark	\checkmark	-
Adaptive autotuning data	\checkmark	-	-

- Under PNU H003 (or PNU H203), enter the motor rating, and under PNU H004 (or PNU H204), the number of motor poles.
- If necessary, change the controller's response speed with PNU H005 and (if motor resonance arises) the motor stabilization constant with PNU H006.

0 Hz range SLV control

This function improves the torque characteristics in the range 0 to 2.5 Hz .

- Under PNU A044 (or PNU A244 for the second parameter set), enter the value $04(\rightarrow$ Section "Voltage/frequency characteristic and voltage boost", Page 126).
- Then, continue as described in Section "Standard SLV control".

Autotuning

With the autotuning function, the motor constants of the connected motors can be automatically determined and written to the memory locations of PNU H030 to H034 (standard parameter set) or PNU H230 to H234 (second parameter set). You do not have to enter the constants manually in this case.

Before you carry out an autotuning, do the following:

- Under PNU F002 and F003, enter the first acceleration and deceleration time.

To allow autotuning to correctly determine the motor's moment of inertia, the same value must be entered in both parameters. The smaller the entered acceleration and deceleration time, the faster can autotuning be carried out. Make sure that no fault messages occur and that the first parameter set is selected.

The Autotuning function can not be used in conjunction with PID control and the frequency inverter must not be in RUN mode.

Make sure, that the motor rating is no more than one stage below the frequency inverter rating, as the autotuning function could not otherwise obtain correct data.

- Then, under PNU H003, enter the motor rating and under PNU H004 the number of motor poles.
- Under PNU A001, enter the value 02, so that the setpoint frequency can be set using PNU A020.
- Under PNU A003, enter the base frequency (default: 50 Hz) and then, under PNU A020, the setpoint frequency. If this parameter is set to 0 Hz , autotuning can not be carried out.
- Under PNU A082, enter the motor voltage for the AVR function.
- Because DC braking must not be used, enter the value 00 under PNU A051.
- Under PNU H001, select the autotuning mode: If the motor can be run to determine the autotuning data, enter 01 here (during autotuning, the motor is accelerated up to 80% of its base frequency); if autotuning is to be carried out without running the motor, enter 02.

Warning!

Make sure that it is admissible to run the motor. The frequency inverter runs the motor for a few seconds in both directions without torque limitation.

To start autotuning, issue the start signal (for example with the ON key). To determine the motor data, autotuning first applies AC and DC voltage to the stationary motor.
If you have entered 02 under PNU H001, two further autotuning runs with motor operation are carried out: First, the motor is accelerated to 80% of the base frequency specified under PNU A003 and decelerated again to standstill; then, the motor is accelerated again, but this time to the setpoint frequency entered under PNU A020.

If autotuning is interrupted during data acquisition because of

- power failure,
- operation of the Off key, or
- interruption of the On signal,
the frequency inverter has to be reset to its default settings
$(\rightarrow$ Section "Initialization", Page 165).
Under PNU H002, specify whether you want to use the standard motor data, the standard autotuning data or the adaptive autotuning data.

Standard autotuning

Autotuning is carried out once after the start signal is issued and the corresponding values are written to PNU H030 to H 034 (or PNU H230 to H234 if PNU H0O2 is set to 01).

Adaptive autotuning

Due to the heat generated by the motor during operation, the motor constants R_{1} may change. With this function, these constants can be re-read when the motor is at standstill. This is achieved by applying a DC voltage to two motor windings for up to five seconds. If a start signal is received during that time, this has priority over the adaptive autotuning procedure.

- Carry out standard autotuning once.
- Activate adaptive autotuning by entering 02 Under PNU H002.
- Deactivate standard autotuning by entering 00 under PNU H001.
- Issue a start signal (for example with the ON key).

Let the motor run until it has reached its operating temperature.

- Issue a stop signal (for example with the OFF key) and wait five seconds before issuing another command.

If you are actuating an external brake, adaptive autotuning is carried out only after actuation of the brake.
$\rightarrow \quad$ You should activate adaptive autotuning only after you have carried out standard autotuning.
$\rightarrow \quad$ If a new start signal is issued after the five seconds, adaptive autotuning is terminated. No new message appears on the display and the data for the last acquisition remains saved.

Once autotuning is completed successfully, the following message appears on the LED display:

If an error has occurred during autotuning, the following is displayed:

The running characteristics of unstable motors can be improved with PNU H006. If the motor is running unstably, check first whether the set motor rating (PNU H0O3) and the set number of poles (PNU H0O4) corresponds with the connected motor. If the rating of the connected motor exceeds the output power of the frequency inverter, reduce the stability constant. If the motor is running poorly, you can also reduce the pulse frequency (PNU b083) or change the output voltage (PNU A045).

The table below lists the parameters of the autotuning function.
Parameters which are only defined automatically are marked
"(autotuning)" in the Name column.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
H001	Autotuning mode	-	-	00	Autotuning not active	00
				01	Carry out autotuning (only at motor standstill)	
				02	Carry out autotuning with motor operation	
$\begin{aligned} & \hline \mathrm{H} 002 \\ & \mathrm{H} 202 \end{aligned}$	Motor data to be used	-	-	00	Use default motor data	00
				01	Use autotuning data (single autotuning procedure)	
				02	Use autotuning data (multiple autotuning procedures)	
$\begin{aligned} & \hline \text { H003 } \\ & \text { H203 } \end{aligned}$	Motor rating	-	-	0.2 to 160 kW	Enter the motor rating. - 0.2 to 75 kW : DV6-340-075 to DV6-340-55K - 0.2 to 160 kW : From DV6-340-75K	Depending on DV6
$\begin{aligned} & \mathrm{H} 004 \\ & \mathrm{H} 204 \end{aligned}$	Number of motor poles	-	-	2/4/6/8	Enter the number of motor poles	4
$\begin{aligned} & \mathrm{H} 005 \\ & \mathrm{H} 205 \end{aligned}$	Motor constant K_{p}	\checkmark	\checkmark	0.01 to 99	Motor gain factor	1.59
$\begin{aligned} & \hline \text { H006 } \\ & \text { H206 } \\ & \text { H306 } \end{aligned}$	Motor stabilization constant	\checkmark	\checkmark	0 to 255	0 function is not active	100
$\begin{aligned} & \mathrm{H} 02 \mathrm{O} \\ & \mathrm{H} 22 \mathrm{O} \end{aligned}$	Motor constant R_{1}	-	-	0 to 65.53Ω	Stator impedance	Depending on
$\begin{aligned} & \hline \mathrm{H} 021 \\ & \mathrm{H} 221 \end{aligned}$	Motor constant $R_{2}{ }^{1)}$	-	-	0 to 65.53Ω	Rotor resistance	
$\begin{aligned} & \hline \mathrm{H} 022 \\ & \mathrm{H} 222 \end{aligned}$	Motor constant L	-	-	0 to 655.3 mH	Motor inductivity	
$\begin{aligned} & \hline \mathrm{H} 023 \\ & \mathrm{H} 223 \end{aligned}$	Motor constant I_{0}	-	-	0 to 655.3 Ar.m.s.	Motor current	
$\begin{aligned} & \hline \mathrm{H} 024 \\ & \mathrm{H} 224 \end{aligned}$	Motor constant ${ }^{2}$)	-	-	1 to 1000	Moment of inertia of the motor relative to the load	
$\begin{aligned} & \hline \text { H030 } \\ & \text { H230 } \end{aligned}$	Motor constant R_{1} (autotuning)	-	-	-	Here, the parameters determined with autotuning are saved. They cannot be set manually. The manually adjustable motor constants can be configured with PNU H 20 to	Depending on DV6
$\begin{aligned} & \hline \text { H031 } \\ & \text { H231 } \end{aligned}$	Motor constant R_{2} (autotuning)	-	-		H24 or H 22 to H 224.	
$\begin{aligned} & \hline \mathrm{H} 032 \\ & \mathrm{H} 232 \end{aligned}$	Motor constant L (autotuning)	-	-			
$\begin{aligned} & \hline \mathrm{H} 033 \\ & \mathrm{H} 233 \end{aligned}$	Motor constant I_{0} (autotuning)	-	-			
$\begin{aligned} & \hline \text { H034 } \\ & \text { H234 } \end{aligned}$	Motor constant J (autotuning)	-	-			

1) In case of an over-compensation, reduce R_{2}
2) The greater J, the slower the motor responds; the smaller J, the faster it responds ($J=$ moment of inertia of the motor relative to the load)

If SLV control is active, set the pulse frequency in PNU b083 to at least $2.1 \mathrm{kHz}(\rightarrow$ Section "Pulse frequency", Page 164). If the motor drives a very small load, (i.e. has a low moment of inertia), it may whip or jolt. If this is the case, do the following:

- Set the motor stabilization constant (PNU H006) accordingly and reduce the pulse frequency (PNU b083).
- Deactivate the AVR function by entering 01 in PNU A081.

PI controller

The PI controller regulates the motor speed in vector control mode.
This function is available only in vector mode $(\rightarrow$ Section
"Voltage/frequency characteristic and voltage boost", Page 126):

- SLV (sensorless vector) control
- 0 Hz SLV control
- Vector control with optional DE6-IOM-ENC module.

With a digital input configured as PPI, you can change over from PI to P control (\rightarrow Section "Changeover from PI to P control (PPI)", Page 98).

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
$\begin{aligned} & \hline \text { H050 } \\ & \text { H250 } \end{aligned}$	P component of the PI control	\checkmark	\checkmark	0 to 1000 \%	Proportional component of the PI control, without a digital input configured as PPI	100.0
$\begin{aligned} & \mathrm{H} 051 \\ & \mathrm{H} 251 \end{aligned}$	I component of the PI control	\checkmark	\checkmark	0 to 1000 \%	Integral component of the PI control, without a digital input configured as PPI	100.0
$\begin{aligned} & \mathrm{H} 052 \\ & \mathrm{H} 252 \end{aligned}$	P component of the P control	\checkmark	\checkmark	0.00 to 10.00	Proportional component of the P control, without a digital input configured as PPI	1.00
$\begin{aligned} & \text { H060 } \\ & \text { H260 } \end{aligned}$	0 Hz SLV magnetization current limitation	\checkmark	\checkmark	0 to 100%	Maximum value for the magnetization current at 0 Hz SLV	100
H070	P component of the PI control with changeover	\checkmark	\checkmark	0 to 1000%	Proportional component of the PI control, with a digital input configured as PPI	100.0
H071	I component of the PI control with changeover	\checkmark	\checkmark	0 to 1000%	Integral component of the PI control, with a digital input configured as PPI	100.0
H072	P component of the P control with changeover	\checkmark	\checkmark	0.00 to 10.00	Proportional component of the P control, with a digital input configured as PPI and with active input	1.0

User-defined parameters - parameter group U

With parameter group U (user), you can group any parameters for quick access. You can save up to twelve editable and display parameters in this group, to give you quick access to your most frequently used parameters. The default value of the U parameters is "no" (no function). You do not have to confirm your selection with the ENTER key. The most recently selected parameter is saved automatically.

Example: Saving acceleration time 1 (PNU F002) in PNU U001:
The DV6 is in the display mode and the RUN lamp is lit.

- Press the PRG key.

The DV6 changes to programming mode, the PRG lamp lights up and 001 or the most recently modified parameter appears on the display.

- Press the DOWN key until U--- appears on the display.
- Press the PRG key. U001 appears on the display.
- Press the PRG key. no appears on the display.
- Press the UP or DOWN key until F002 appears on the display.
- Press the PRG key.

The set acceleration time 1 in seconds appears on the display (default value: 30).

You can change the set value with the UP and DOWN arrow keys.

There are now two possibilities:
Accept the set value by pressing the ENTER key.

- To reject the set value, press the PRG key.

F002 appears on the display. PNU F002 is now saved under

 PNU U001.- Press the PRG key. U001 appears on the display.
- Press the PRG key. U---- appears on the display.
- Press the UP or DOWN key until dODI appears on the display.
- Press the PRG key. The DV6 changes to display mode and displays the set frequency.

You can now change PNU F002 by calling up PNU U001:

- Go to parameter group U. The display shows U----.
- Press the PRG key. U001 appears on the display.
- and press the PRG key again. F602 appears on the display.

You can now change the value of PNU F002.

PNU	Name	Adjustable in RUN mode		Value	Function	WE
		Normal	Extended			
U001	User-defined parameters	-	\checkmark	$\begin{aligned} & \text { PNU A001 to } \\ & \text { P032 } \end{aligned}$	Under PNU U001 to U012, you can save frequently used parameters.	no
U002						
U003						
U004						
U005						
U006						
U007						
U008						
U009						
U010						
U011						
U012						

7 Messages

This section lists the messages the DV6 frequency inverter issues and explains their meaning.

Fault messages

When an overcurrent, overvoltage or undervoltage occurs, the output of the DV6 frequency inverter is disabled to protect the DV6 from damage. The connected motor then coasts to a stop. The inverter remains in this condition until the fault message is acknowledged with the OFF key or the RST input.

State of frequency inverter on fault message

The frequency inverter's state when a fault occurs provides additional information to help rectify the fault. Some fault messages indicate the status of the DV6 frequency inverter with a number after the point. $E=2$, for example, means that fault 7 has occurred while the frequency inverter was in status 2.

The individual states are described in the table below

Status code	DV6 status
.--- .9	Reset
---.1	Stop
---.2	Deceleration
---.3	Static operation
--.4	Acceleration
.-- .5	f_{0} stop
---.6	Start
.-- .7	DC braking
---.8	Current limit
.-- .9	Autotuning

Fault message display

Display	Cause	Description
E 01	Overcurrent in the output stage in static operation	If the output current reaches an excessive level, the output voltage is switched off. This happens when - the frequency inverter's output is short-circuited, - the motor is blocked, - an excessive load is suddenly applied to the output.
E02	Overcurrent in the output stage during deceleration	
EQS	Overcurrent in the output stage during acceleration	
E04	Overcurrent in the output stage in standstill	
E05	Overload	The internal electronic motor protection has switched off the output voltage because the motor was overloaded.
EQ6	Overload	If the duty factor of the built-in braking transistor of the DV6 is too great, the braking transistor is switched off (the generated overvoltage disconnects the output voltage).
EQT	Overvoltage	The output voltage has been switched off because the motor was operating regeneratively.
E08	EEPROM fault	If the program memory does not operate reliably due to radio frequency interference or excessive temperature, the output voltage is switched off. If the supply voltage is switched off while the RST input is active, an EEPROM fault occurs when the supply voltage is reapplied.
Egs	Undervoltage	If the $D C$ voltage is too low, the output voltage is switched off (correct function of the electronics is no longer possible; problems such as overheating of the motor and insufficient torque may arise).
E10	Fault in current transformer	The output voltage is disconnected when a fault occurs in the built-in current transformer of the DV6.
E11	Processor malfunction	The processor does not operate correctly. The output voltage is switched off.
E12	External fault message	The output voltage is switched off due to an external fault message which is present on a digital input configured as an EXT input.

Display	Cause	Description
E13	Restart inhibit activated	The mains voltage was switched on or an intermittent interruption in the supply voltage has occurred while unattended start protection (input USP) was active.
E14	Ground fault	Earth faults between the U, V or W terminals and earth are being reliably detected. A protective circuit prevents destruction of the frequency inverter, but does not protect the operating personnel.
E15	Mains overvoltage	If the supply voltage is higher than permitted, the output voltage is switched off 100 s after the voltage supply has been switched on.
E16	Intermittent mains failure	An intermittent mains failure of at least 15 ms has occurred. This message appears when the duration of the mains failure is longer than the time entered under PNU b002 \rightarrow Section "Automatic restart after a fault", Page 151).
E21	Overtemperature	If the temperature sensor installed in the power section records an operating temperature above the permissible limit value, the output voltage is switched off.
E23	Gate array fault	Internal communication error between CPU and gate array
E24	Mains phase failure	One of the three mains phases has failed.
ESU	IGBT fault	If an excessive current is applied at an IGBT (transistor in the power end stage), the output voltage is switched off to protect the transistor.
E35	PTC fault message	If the resistance of the external PTC thermistor connected to the PTC input (terminals TH and CM1) is too high, the output voltage is switched off.
E36	External brake fault	If the frequency inverter activates the external brake and does not receive a status signal from the brake within the time entered under PNU b024 \rightarrow Section "Controlling an external brake", Page 169), the output voltage is switched off.
-----	Undervoltage	The frequency inverter attempts a restart because the input voltage is too low. If the restart fails, this fault message is issued to save the undervoltage fault and the frequency inverter is switched off.
$\begin{aligned} & \text { E60 to } \\ & \text { E69 } \end{aligned}$	Fault, expansion module 1	A fault has occurred in expansion modules 1 or 2 or their connections. For further information, refer to the manuals for the affected expansion module.
ETb to ETG	Fault, expansion module 2	

Fault history register

The DV6 frequency inverter has a fault history register. The frequency inverter saves the six most recent fault messages, which you can retrieve under PNU d081 to d086. PNU d081 shows the most recent fault message, PNU d082 last but one, etc. When a new fault occurs, it is saved to PNU_d081 and all older faults are moved on by one PNU (PNU d081 \rightarrow d082, PNU d082 \rightarrow d083, etc.) In addition to fault messages E01 to E079, the frequency inverter saves the following information:

- Output frequency
- Motor current
- Internal DC link voltage
- Running time (total time for which the inverter is in RUN mode)
- Mains On time (total time)
- Go to one of the display parameters, PNU d081 to d086.
- Press the PRG key.

If a fault message has been saved, it appears on the display, for example EDT:2. To view further information about the fault, use the UP and DOWN arrow keys (\rightarrow Fig. 172). To return to the display mode, press the PRG key.

Figure 172: Information in the fault history register
(1) Fault message number
(2) Output frequency
(3) Motor current
(4) Internal DC link voltage
(5) Running time (total time for which the inverter is in RUN mode)
(6) Mains On time (total time)

Other messages

This section describes the messages issued by the DV6 frequency inverter, for example in standby mode when mains power is switched off.
Cause
The mains voltage has been switched off.
The waiting time before automatic restart is inverter is in standby mode
counting down (PNU b001 and bo03,
nach Störung", Page 153).

Warnings

Conflicting parameter inputs (for example minimum operating frequency PNU A062 > end frequency PNU A004). In addition, the PRG LED flashes until the parameters are corrected.

The following warnings may be issued:

Display	Function		
$\begin{aligned} & \mathrm{H} 001 \\ & \mathrm{H} 201 \end{aligned}$	Maximum operating frequency, PNU A061 (A261)	$>$	End frequency, PNU A004 (A204, A304)
$\begin{aligned} & \mathrm{H} 002 \\ & \mathrm{H} 202 \end{aligned}$	Minimum operating frequency, PNU A062 (A262)	>	
H004 H 204 $\mathrm{H} S \mathrm{O} 4$	Nominal motor frequency, PNU A003 (A203, A303)	>	
H005 H20S H30S	Setpoint frequency, PNU F001 or PNU A020 (A220, A320)	>	
H0D6 H206 HSOE	Fixed frequencies 1 to 15, PNU A021 to A035	>	
$\begin{aligned} & \mathrm{HOL2} \\ & \mathrm{H} 212 \end{aligned}$	Minimum operating frequency, PNU A062 (A262)	>	Maximum operating frequency, PNU A061 (A261)
$\begin{aligned} & \mathrm{H} 015 \\ & \underline{H 215} \end{aligned}$	Setpoint frequency, PNU F001 or PNU A020 (A220, A320)	>	
H016 H216	Fixed frequencies 1 to 15, PNU A021 to A035	>	
$\begin{aligned} & \mathrm{H} 021 \\ & \mathrm{H} 221 \end{aligned}$	Maximum operating frequency, PNU A061 (A261)	$<$	Minimum operating frequency, PNU A062 (A262)
$\begin{aligned} & \mathrm{HOLS} \\ & \mathrm{H} 225 \end{aligned}$	Setpoint frequency, PNU F001, PNU A020 (A220, A320)	$<$	
$\begin{aligned} & \frac{H 0 S}{H 2 S} \\ & \hline 2 \end{aligned}$	Maximum operating frequency, PNU A061 (A261)	$<$	Increased starting frequency, PNU b082
$\begin{aligned} & \mathrm{HOS} 2 \\ & \mathrm{H} 2 \mathrm{~S} 2 \end{aligned}$	Minimum operating frequency, PNU A062 (A262)	$<$	
$\begin{aligned} & H 0 S 5 \\ & H 2 S 5 \\ & H S S 5 \end{aligned}$	Setpoint frequency, PNU F001 or PNU A020 (A220, A320)	$<$	
H6S6	Fixed frequencies 1 to 15, PNU A021 to A035	$<$	
H0S 7	Jogging frequency, PNU A038	$<$	
H085 H285 H385	Setpoint frequency, PNU F001 or PNU A020 (A220, A320)	$=$	Frequency jump 1 to $3 \pm$ jump width, PNU A063 to A0681)
He86	Fixed frequencies 1 to 15, PNU A021 to A035	$=$	

Display	Function		
$\begin{aligned} & \mathrm{H} 9 \mathrm{O} 1 \\ & \mathrm{H} 291 \end{aligned}$	Maximum operating frequency, PNU A061 (A261)	>	User-configurable $\Delta U / f$ characteristic, frequency 7 , PNU b112
$\begin{aligned} & \mathrm{H092} \\ & \mathrm{H} 292 \end{aligned}$	Minimum operating frequency, PNU A062 (A262)	>	
$\begin{aligned} & \mathrm{H} 695 \\ & \mathrm{H} 295 \end{aligned}$	Setpoint frequency, PNU F001 or PNU A020 (A220, A320)	>	
H096	Fixed frequencies 1 to 15, PNU A021 to A035	>	
H110	User-configurable $\Delta U / f$ characteristic, frequency 1 to 6 , PNU b100, b102, b104, b106, b108 and b110	>	
	User-configurable $\Delta U / f$ characteristic, frequency 2 to 6 , PNU b100, b102, b104, b106, b108 and b110	$<$	User-configurable $\Delta U / f$ characteristic, frequency 1 , PNU b100
	User-configurable $\Delta U / f$ characteristic, frequency 1, PNU b100	>	User-configurable $\Delta U / f$ characteristic, frequency 2,
	User-configurable $\Delta U / f$ characteristic, frequency 3 to 6 , PNU b104, b106, b108 and b110	$<$	
	User-configurable $\Delta U / f$ characteristic, frequency 1 and 2, PNU b100 and b102	>	User-configurable $\Delta U / f$ characteristic, frequency 3, PNU b104
	User-configurable $\Delta U / f$ characteristic, frequency 4 to 6 , PNU b106, b108 and b110	<	
	User-configurable $\Delta U / f$ characteristic, frequency 1 to 3 , PNU b100, b102 and b104	>	User-configurable $\Delta U / f$ characteristic, frequency 4, PNU b106
	User-configurable $\Delta U / f$ characteristic, frequency 5 and 6, PNU b108 and b110	<	
	User-configurable $\Delta U / f$ characteristic, frequency 1 to 4, PNU b100, b102, b104 and b106	>	User-configurable $\Delta U / f$ characteristic, frequency 5 , PNU b108
	User-configurable Δ U/f characteristic, frequency 6, PNU b110	<	
	User-configurable $\Delta U / f$ characteristic, frequency 1 to 5 , PNU b100, b102, b104, b106 and b108	>	User-configurable $\Delta U / f$ characteristic, frequency 6, PNU b110
H120	Electronic motor protection, frequency 2 and 3, PNU b017 and b019	$<$	Electronic motor protection, frequency 1, PNU b015
	Electronic motor protection, frequency 1, PNU b015	>	Electronic motor protection, frequency 2, PNU b017
	Electronic motor protection, frequency 3, PNU b019	$<$	
	Electronic motor protection, frequency 1 and 2, PNU b015 and b017	>	Electronic motor protection, frequency 3, PNU b019

[^3]The warning is no longer displayed when the above conditions no longer apply. The input settings are reset to their default values (initialization)

8 Troubleshooting

Fault	Condition	Possible cause	Remedy
The motor will not start.	There is no voltage present at outputs U , V and W .	Is voltage applied to terminals L1, L2 and L3? If yes, is the ON lamp lit?	Check terminals L1, L2, L3 and U, V, W. Switch on the supply voltage.
		Does the LED display on the keypad indicate a fault ($\mathrm{E}_{\text {... }}$.. ...)?	Analyze the cause of the fault signal $(\rightarrow$ Section "Messages", Page 177). Acknowledge the fault message with the reset command (e.g. by pressing the OFF key).
		Has a start signal been issued?	Issue the start signal with the ON key or through the FWD/REV input.
		Has a setpoint frequency been entered under PNU FO01 (only for control using operator panel)?	Under PNU FO01, enter a setpoint frequency.
		Are the setpoint definitions through the potentiometer correctly wired to terminals H, O and L ?	Check that the potentiometer is connected correctly.
		Are inputs O, O or Ol correctly connected for external setpoint definition?	Check that the setpoint signal is correctly connected.
		Are the digital inputs configured as RST or FRS still active?	Deactivate RST and/or FRS. Check the signal on digital input 1 (default setting: RST).
		Has the correct source for the frequency setpoint (PNU A001) been set? Has the correct source for the start signal (PNU A002) been set?	Correct PNU A001 as appropriate. Correct PNU A002 as appropriate. $(\rightarrow$ Section "Setting the frequency and start signal parameters", Page 123)
	There is voltage present at outputs U , V and W .	Is the motor blocked or is the motor load too high?	Reduce the load acting on the motor. Test the motor without load.
The motor turns in the wrong direction.	-	Are output terminals U, V and W correctly connected? Does the connection of terminals U, V and W correspond with the direction of rotation of the motor?	Connect output terminals U, V and W correctly to the motor according to the required direction of motor rotation (generally the sequence $\mathrm{U}, \mathrm{V}, \mathrm{W}$ causes clockwise operation).
		Are the control signal terminals correctly wired?	Use control signal terminal FW(D) for clockwise operation and REV for anticlockwise operation.
		Has PNU F004 been configured correctly?	Under PNU FO04, set the required direction of rotation.
The motor will not start.	-	A setpoint value is not present on terminal 0,02 or 01 .	Check the potentiometer or the external setpoint generator and replace if necessary.
		Is a fixed frequency accessed?	Observe the sequence of priority: the fixed frequencies always have priority over the inputs 0,02 or 01 .
		Is the motor load too high?	Reduce the motor load as the overload limit will prevent the motor reaching its normal speed if there is an overload.

Fault	Condition	Possible cause	Remedy
The motor does not operate smoothly.	-	Are the load changes on the motor too high?	Select a frequency inverter and motor with a higher performance. Reduce the level of load changes.
		Do resonant frequencies occur on the motor?	Mask these frequencies with the frequency jumps (PNU A063 to A068, \rightarrow Section "Operating frequency range", Page 132) or change the pulse frequency (PNU b083, \rightarrow Section "Pulse frequency", Page 164).
The drive speed does not correspond with the frequency	-	Is the maximum frequency set correctly?	Check the set frequency range or the set voltage/ frequency characteristic.
		Are the rated speed of the motor and the gearbox reduction ratio correctly selected?	Check the rated motor speed or the gearbox reduction ratio.
The saved parameters do not correspond to the entered values.	Entered values have not been saved.	The supply voltage was switched off before the entered values were saved by pressing the ENTER key.	Reenter the affected parameters and save the input again.
		After the supply voltage was switched off, the entered and saved values are transferred into the internal EEPROM. The supply voltage should remain off for at least six seconds.	Enter the data again and switch off the supply voltage for at least six seconds.
	The values of the copy unit were not accepted by the frequency inverter.	After copying the parameters of the external keypad DEX-KEY-10 into the frequency inverter, the supply voltage was left on for less than six seconds.	Copy the data again and leave the supply voltage on for at least six seconds after completion.
It is not possible to make any inputs.	The motor cannot be started or stopped or setpoint values cannot be set.	Are PNU A001 and A002 configured correctly?	Check the settings under PNU A001 and A002 $(\rightarrow$ Section "Setting the frequency and start signal parameters", Page 123).
	No parameters can be set or changed.	Has the software parameter protection been activated?	Deactivate the parameter protection with PNU b031 \rightarrow Section "Parameter protection", Page 159), so that all parameters can be changed again.
		Has the hardware parameter protection been activated?	Deactivate the digital input configured as SFT $(\rightarrow$ Section "Software protection (SFT)", Page 83).
The electronic motor protection activates (fault message: E 05).		Is the manual voltage boost set too high? Were the correct settings made for the electronic motor protection?	Check the boost setting and the electronic motor protection setting. (\rightarrow Section "Voltage/ frequency characteristic and voltage boost", Page 126)

To be observed when saving changed parameters:
After saving changed parameters with the ENTER key, no inputs can be made using the keypad of the frequency inverter for at least six seconds. If, however, a key is pressed before this time elapses, or if the reset command is issued or the frequency inverter is switched off, the data may not be correctly saved.

Appendix

Technical Data

DV6-340-...	075	1K5	2K2	4K0	5K5	7K5	11K	15K	18K5
Protection class according to EN 60529	IP20								
Overvoltage category	III								
Maximum permissible effective motor power in kW; data for four pole threephase current asynchronous motors	0.75	1.5	2.2	4.0	5.5	7.5	11.0	15.0	18.5
Maximum permissible 400 V	1.7	2.6	3.6	5.9	8.3	11.0	15.9	22.1	26.3
apparent motor power in 480 V kVA at	2.0	3.1	4.4	7.1	9.9	13.3	19.1	26.6	31.5
Primary side: Number of phases	Three-phase								
Primary side: Rated voltage	$342 \mathrm{~V} \sim-0$ \% to $528 \mathrm{~V} \sim+0 \%, 47$ to 63 Hz								
Secondary side: Rated voltage	Three-phase 380 to 480 V ~ Corresponding to the primary side rated voltage If the primary voltage drops, the secondary voltage also drops.								
Primary side: Rated current in A	2.8	4.2	5.8	9.5	13.0	18.0	25.0	35.0	42.0
Secondary side: Rated current in A	2.5	3.8	5.3	8.6	12.0	16.0	23.0	32.0	38.0
Secondary side: Frequency range	0.1 to 400 Hz With motors which are operated at rated frequencies above $50 / 60 \mathrm{~Hz}$, the maximum possible motor speed should be observed.								
Frequency error limits (at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$)	- Digital setpoint value: $\pm 0.01 \%$ of the maximum frequency - Analog setpoint value: $\pm 0.2 \%$ of the maximum frequency								
Frequency resolution	- Digital setpoint value: 0.1 Hz - Analog setpoint value: Maximum frequency/1000								
Voltage/frequency characteristic	- Constant torque - Reduced torque - Increased (SLV-controlled) torque - Vector-controlled torque (only with optional DE6-IOM-ENC module) - User-programmable $\Delta U / f$ characteristic								
Permissible overcurrent	150% for $60 \mathrm{~s}, 200 \%$ for 0.5 s (once every ten minutes)								
Acceleration/deceleration time	0.01 to 3600 s with linear and nonlinear characteristic (applies also for second and third acceleration/ deceleration time)								
Torque during start	- 200% at 0.5 Hz with SLV control - 150% in the range 0 to 2.5 Hz with 0 Hz range SLV control and motor one rating class smaller than DV6 - 100% with vector control								
Braking torque									
With feedback to the capacitors: reduced braking torque at frequencies exceeding 50 Hz .	Approx. 50 \%		Approx. 20 \%				Approx. 10 \%		
With external braking resistor	200%			140%	100\%		70 \%	-	
With external braking unit	-							40 to 200 \%	
With DC injection braking	Braking occurs at frequencies below the minimum frequency (minimum frequency, braking time and braking torque are user-definable)								

DV6-340-...		075	1K5	2K2	4K0	5K5	7K5	11K	15K	18K5
Inputs										
Frequency setting	Keypad	Setting through keys or potentiometer								
	External signals	- 0 to 10 V -=, input impedance $10 \mathrm{k} \Omega$; - -10 V to $+10 \mathrm{~V}=-$, input impedance $10 \mathrm{k} \Omega$; - 4 to 20 mA , load impedance 250Ω - Potentiometer $\geqq 1 \mathrm{k} \Omega$, recommended $4.7 \mathrm{k} \Omega$								
Clockwise/anticlockwise operation (start/ stop)	Keypad	ON key (for Start) and OFF key (for Stop); default setting = clockwise operation								
	External signals	- Digital input FW for clockwise operation (FWD) - Digital input programmable as REV for anticlockwise operation								
Digital control inputs programmable as		- REV: Start/stop anticlockwise operation - FF1 to FF4: Fixed frequency selection - JOG: Jog mode - DB: DC braking active - SET: Second parameter set active - 2CH: Second time ramp - FRS: Free run stop - EXT: External fault message - USP: Unattended start protection - CS: Heavy mains starting - SFT: Software protection - AT: Use setpoint value 4 to 20 mA - SET3: Third parameter set active - RST: Reset - STA: Pulse start (3-wire) - STP: Pulse stop (3-wire) - F/R: Direction (3-wire) - PID: PID control active - PIDC: Reset integral component of PID control - CAS: Tacho-generator with vector control - UP: Remote access, acceleration - DWN: Remote access, deceleration - UDC: Reset frequency with remote control - OPE: Setpoint value through operator panel - SF1 to SF7: Bitwise fixed frequency selection - OLR: Change over current limit - TL: Torque limitation active (only with vector control) - TRQ1: Torque limitation 1 active (clockwise, in drive mode) - TRQ2: Torque limitation 2 active (anticlockwise, regenerative) - PPI: P or PI control (only with vector control) - BOK: Brake enable confirmation - ORT: Direction of rotation (only with optional DE6-IOM-ENC module) - LAC: Ramp function Off - PCLR: Delete positioning deviation (only with optional DE6-IOM-ENC module) - STAT: Setpoint definition through module (only with optional DE6-... module) - NO: No function								

DV6-340-...	075	1K5	2K2	4K0	5K5	7K5	11K	15K	18K5
Outputs									
Digital signalling outputs programmable as	- RUN: Motor operational - FA1/FA2: Frequency reached/exceeded - FA3/FA4/FA5: Frequency reached (1)/frequency exceeded (2)/frequency reached (2) - OD: PID deviation exceeded - OL: Overload - AL: Fault - QTQ: Torque reached/exceeded - IP: Mains failure - UV: Undervoltage - TRQ: Torque limitation - RNT: Running time exceeded - ONT: Mains On time exceeded - THM: Motor thermal overload - BRK: Enable signal for external brake - BER: Brake fault - ZS: Zero speed (only with optional DE6-IOM-ENC module) - DSE: Speed deviation exceeded (only with optional DE6-IOM-ENC module) - POK: Positioning (only with optional DE6-IOM-ENC module) - OL2: Overload alarm 2								
Analog outputs	- Frequency output: $I \leqq 1.2 \mathrm{~mA}$, pulse-width modulated signal (PWM) - Voltage output: 0 to $10 \mathrm{~V}=-, I \leqq 2 \mathrm{~mA}$ - Current output: 4 to 20 mA , load impedance 250Ω The following variables can be output: - Output frequency, PWM - Output current - Torque (only SLV control, vector control and 0 Hz SLV control) - Output frequency, frequency-modulated (terminal FM only) - Output voltage - Power consumption - Thermal load ratio - Ramp frequency								
Signalling relay	Relay contact as a two-way switch; relay energized with a fault								
Further features (excerpt)	- Autotuning - Automatic voltage regulation - Unattended start protection - Variable amplification and output voltage reduction - Frequency jumps - Minimum/maximum frequency limitation - Output frequency display - Fault history register available - Freely selectable pulse frequency: 0.5 to 15 kHz - PID control - Automatic torque boost - On/OFF fan control - Second and third parameter set selectable - Vector control - SLV (sensorless vector) control - 0 Hz SLV control - Vector with feedback (only with optional DE6-IOM-ENC module)								
Safety features	- Overcurrent - Overvoltage - Undervoltage - Overtemperature - Ground fault - Overload - Electronic motor protection - Current transformer fault - Dynamic braking function (regenerative)								

DV6-340-...	075	1K5	2K2	4K0	5K5	7K5	11K	15K	18K5
Ambient conditions									
Ambient temperature	$-10 \text { to }+50^{\circ} \mathrm{C}$ From about +40 to $+50^{\circ} \mathrm{C}$, the pulse frequency should be reduced to 2 kHz . The output current should be less than 80% of the rated current in this case.								
Temperature/humidity during storage	-25 to $70^{\circ} \mathrm{C}$ (for short periods only, e.g. during transport) 20 to 90% relative humidity (non condensing)								
Permissible vibration	Maximum $5.9 \mathrm{~m} / \mathrm{s}^{2}(=0.6 \mathrm{~g})$ at 10 to 55 Hz								
Installation height and location	Maximum 1000 m above sea level in a housing or control panel (IP54 or similar)								
Optional accessories	- Remote operating unit: DEX-KEY-10 - Choke to improve the power factor - DE6-LZ...-V4 RFI filter - Expansion modules - Encoder module: DE6-IOM-ENC - PROFIBUS-DP module: DE6-NET-DP								

DV6-340-...	22K	30K	37K	45K	55K	75K	90K	110K	132K
Protection class according to EN 60529	IP20								
Overvoltage category	III								
Maximum permissible effective motor power in kW, details for four pole threephase current asynchronous motors	22.0	30.0	37.0	45.0	55.0	75.0	90.0	110	132
Maximum permissible 400 V	33.2	40.1	51.9	62.3	76.2	103.2	121.9	150.3	180.1
apparent motor power 480 V in kVA at	39.9	48.2	62.3	74.8	91.4	123.8	146.3	180.4	216.1
Primary side: Number of phases	Three-phase								
Primary side: Rated voltage	$342 \mathrm{~V} \sim-0 \%$ to $528 \mathrm{~V} \sim+0 \%, 47$ to 63 Hz								
Secondary side: Rated voltage	Three-phase 380 to 480 V ~ Corresponding to the primary side rated voltage If the primary voltage drops, the secondary voltage also drops.								
Primary side: Rated current in A	53.0	63.0	83.0	99.0	121	164	194	239	286
Secondary side: Rated current in A	48.0	58.0	75.0	90.0	110	149	176	217	260
Secondary side: Frequency range	0.1 to 400 Hz With motors which are operated at rated frequencies above $50 / 60 \mathrm{~Hz}$, the maximum possible motor speed should be observed.								
Frequency error limits (at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$)	- Digital setpoint value: $\pm 0.01 \%$ of the maximum frequency - Analog setpoint value: ± 0.2 \% of the maximum frequency								
Frequency resolution	- Digital setpoint value: 0.1 Hz - Analog setpoint value: Maximum frequency/1000								
Voltage/frequency characteristic	- Constant torque - Reduced torque - Increased (SLV-controlled) torque - Vector-controlled torque (only with optional DE6-IOM-ENC module) - User-programmable $\Delta U / f$ characteristic								
Permissible overcurrent	150% for $60 \mathrm{~s}, 200 \%$ for 0.5 s (once every ten minutes)								
Acceleration/deceleration time	0.01 to 3600 s with linear and nonlinear characteristic (applies also for second and third acceleration/ deceleration time)								

DV6-340-...	22K	30K	37K	45K	55K	75K	90K	110K	132K
Torque during start	- 200 \% at 0.5 Hz with SLV control - 150% in the range 0 to 2.5 Hz with 0 Hz range SLV control and motor one rating class smaller than DV6 - 100% with vector control					- 180% at 0.5 Hz with SLV control - 130% in the range 0 to 2.5 Hz with 0 Hz range SLV control and motor one rating class smaller than DV6 - 100% with vector control			
Braking torque									
with feedback in to the capacitors: reduced braking torque at frequencies exceeding 50 Hz .	Approx. 10 \%								
with external braking resistor	-								
with external braking unit	$\begin{aligned} & 35 \text { to } \\ & 200 \% \end{aligned}$	$\begin{aligned} & 110 \text { to } \\ & 170 \% \end{aligned}$	$\begin{aligned} & 90 \text { to } \\ & 150 \% \end{aligned}$	$\begin{aligned} & \hline 70 \text { to } \\ & 120 \% \end{aligned}$	$\begin{aligned} & 60 \text { to } \\ & 100 \% \end{aligned}$	$\begin{aligned} & 45 \text { to } \\ & 70 \% \end{aligned}$	40 to 60 \%	$\begin{aligned} & 30 \text { to } \\ & 50 \% \end{aligned}$	$\begin{aligned} & 25 \text { to } \\ & 40 \% \end{aligned}$
with DC injection braking	Braking occurs at frequencies below the minimum frequency (minimum frequency, braking time and braking torque are user-definable)								
Inputs									
Frequency setting \quadKeypad External signals	Setting through keys or potentiometer								
	- 0 to 10 V - , input impedance $10 \mathrm{k} \Omega$; - -10 V to +10 V --, input impedance $10 \mathrm{k} \Omega$; - 4 to 20 mA , load impedance 250Ω - Potentiometer $\geqq 1 \mathrm{k} \Omega$, recommended $4.7 \mathrm{k} \Omega$								
Clockwise/anticlock- wise operation (start/ Keypad stop) External signals	ON key (for Start) and OFF key (for Stop); default setting = clockwise operation								
	- Digital input FW for clockwise operation (FWD) - Digital input programmable as REV for anticlockwise operation								

DV6-340-...	22K	30K	37K	45K	55K	75K	90K	110K	132K
Digital control inputs programmable as	- REV: Start/stop anticlockwise operation - FF1 to FF4: Fixed frequency selection - JOG: Jog mode - DB: DC braking active - SET: Second parameter set active - 2CH: Second time ramp - FRS: Free run stop - EXT: External fault message - USP: Unattended start protection - CS: Heavy mains starting - SFT: Software protection - AT: Use setpoint value 4 to 20 mA - SET3: Third parameter set active - RST: Reset - STA: Pulse start (3-wire) - STP: Pulse stop (3-wire) - F/R: Direction (3-wire) - PID: PID control active - PIDC: Reset integral component of PID control - CAS: Tacho-generator with vector control - UP: Remote access, acceleration - DWN: Remote access, deceleration - UDC: Reset frequency with remote control - OPE: Setpoint value through operator panel - SF1 to SF7: Bitwise fixed frequency selection - OLR: Change over current limit - TL: Torque limitation active (only with vector control) - TRQ1: Torque limitation 1 active (clockwise, in drive mode) - TRQ2: Torque limitation 2 active (anticlockwise, regenerative) - PPI: P- or PI control (only with vector control) - BOK: Brake enable confirmation - ORT: Direction of rotation (only with optional DE6-IOM-ENC module) - LAC: Ramp function Off - PCLR: Delete positioning deviation (only with optional DE6-IOM-ENC module) - STAT: Setpoint definition through module (only with optional DE6-... module) - NO: No function								
Outputs									
Digital signalling outputs programmable as	- RUN: Motor operational - FA1/FA2: Frequency reached/exceeded - FA3/FA4/FA5: Frequency reached (1)/frequency exceeded (2)/frequency reached (2) - OD: PID deviation exceeded - OL: Overload - AL: Fault - QTQ: Torque reached/exceeded - IP: Mains failure - UV: Undervoltage - TRQ: Torque limitation - RNT: Running time exceeded - ONT: Mains On time exceeded - THM: Motor thermal overload - BRK: Enable signal for external brake - BER: Brake fault - ZS: Zero speed (only with optional DE6-IOM-ENC module) - DSE: Speed deviation exceeded (only with optional DE6-IOM-ENC module) - POK: Positioning (only with optional DE6-IOM-ENC module) - OL2: Overload alarm 2								

DV6-340-...	22K	30K	37K	45K	55K	75K	90K	110K	132K
Analog outputs	- Frequency output: $I \leqq 1.2 \mathrm{~mA}$, pulse-width modulated signal (PWM) - Voltage output: 0 to $10 \mathrm{~V}=-\mathrm{I}$ I 2 mA - Current output: 4 to 20 mA , load impedance 250Ω The following variables can be output: - Output frequency, PWM - Output current - Torque (only SLV control, vector control and 0 Hz SLV control) - Output frequency, frequency-modulated (terminal FM only) - Output voltage - Power consumption - Thermal load ratio - Ramp frequency								
Signalling relay	Relay contact as a two-way switch; relay energized with a fault								
Further features (excerpt)	- Autotuning - Automatic voltage regulation - Unattended start protection - Variable amplification and output voltage reduction - Frequency jumps - Minimum/maximum frequency limitation - Output frequency display - Fault history register available - Freely selectable pulse frequency: 0.5 to 15 kHz - PID control - Automatic torque boost - On/OFF fan control - Second and third parameter set selectable - Vector control - SLV (sensorless vector) control - 0 Hz SLV control - Vector with feedback (only with optional DE6-IOM-ENC module)								
Safety features	- Overcurrent - Overvoltage - Undervoltage - Overtemperature - Ground fault - Overload - Electronic motor protection - Current transformer fault - Dynamic braking function (regenerative)								

DV6-340-...	22K	30K	37K	45K	55K	75K	90K	110K	132K
Ambient conditions									
Ambient temperature	$-10 \text { to }+50^{\circ} \mathrm{C}$ From about +40 to $+50^{\circ} \mathrm{C}$, the pulse frequency should be reduced to 2 kHz . The output current should be less than 80% of the rated current in this case.								
Temperature/humidity during storage	-25 to $70^{\circ} \mathrm{C}$ (for short periods only, e.g. during transport) 20 to 90% relative humidity (non condensing)								
Permissible vibration	Up to $5.9 \mathrm{~m} / \mathrm{s}^{2}$ $(=0.6 \mathrm{~g})$ at Up to $2.94 \mathrm{~m} / \mathrm{s}^{2}(=0.3 \mathrm{~g})$ at 10 to 55 Hz 10 to 55 Hz								
Installation height and location	Maximum 1000 m above sea level in a housing or control panel (IP54 or similar)								
Optional accessories	- Remote operating unit: DEX-KEY-10 - Choke to improve the power factor - DE6-LZ...-V4 RFI filter - Expansion modules - Encoder module: DE6-IOM-ENC - PROFIBUS-DP module: DE6-NET-DP								

Weights and dimensions

Figure 173: DV6 dimensions

DV6-340-	a	a1	b	b1	c	\varnothing	[kg]
075	159	130	260.5	241	152	6	3.5
1 K 5							
2K2							
4K0							
5 K 5							
7K5	216	189	266	246	183	7	5.0
11K							
15K	256	229	396	376	212	7	12
18K5							
22K							
30K	310	265	540	510	202	10	20
37K	390	300	550	520	255.2	10	30
45K							
55K							
75K	390	300	700	670	275.2	12	60
90K							
110K	480	380	740	710	293.2	12	80
132K							

Cables and fuses

The cross-sections of the cables and line protection fuses used must correspond with local standards. The values are laid out for three-phase, 400 V mains connections.

DV6-340-	θ	θ		"as L1, L2, L3, U, V, W, PE	
	VDE	UL')	Moeller	mm ${ }^{2}$	AWG
075	M6 A	10 A	PKM0-6,3	1.5	20
1K5	M6 A	10 A	PKM0-6,3	2.5	18
2K2	M10 A	10 A	PKM0-10	2.5	16
4K0	M10 A	15 A	PKM0-10	2.5	14
5K5	M16 A	15 A	PKM0-16	2.5	12
7K5	M20 A	20 A	PKMO-20	4	10
11K	M32 A	30 A	PKM0-25	6	8
15K	M40 A	40 A	PKZM4-40	10	6
18K5	M50 A	50 A	PKZM4-50	16	6
22K	M50 A	60 A	PKZM4-58	16	4
30K	M63 A	70 A	PKZM4-63	25	3
37K	M80 A	90 A	NZM7-80N-OBI	35	1
45K	M100 A	125 A	NZM7-100N-OBI	35	1
55K	M125 A	125 A	NZM7-125N-OBI	2×35	1/0
75K	M160 A	175 A	NZM7-160N-OBI	2×35	2×1
90K	M200 A	200 A	NZM7-200N-OBI	2×50	2×1
110K	M250 A	250 A	NZM7-250N-OBI	2×70	$2 \times 1 / 0$
132K	M315 A	300 A	NZM10-400N/ZM400	2×70	$2 \times 2 / 0$

1) Approved fuses (class J, 600 V) and fuse holders

Use cables with a larger cross-section for supply voltage and motor cables which exceed about 20 m in length.
Control cables should be screened, and have a cross-section of 0.14 to $1.5 \mathrm{~mm}^{2}$.

Signalling relay output, cross-section of 0.75 to $1.5 \mathrm{~mm}^{2}$.
About 5 to 6 mm of the cable ends should be stripped.

Mains contactors

$\rightarrow \quad$ The mains contactors listed here assume the network's rated current ($I_{L N}$) without mains choke or mains filter. Their selection is based on the thermal current (AC-1).

Caution!

Jog mode must not be used through the mains contactor (rest period $\geqq 180$ s between switching off and on)

DV6-340-	DV6 phase current	Mains contactor	
		Open/enclosed	Model
	$I_{\text {LN }}[\mathrm{A}]$	$I_{\text {th }} \mathrm{AC}-1$ [A]	
075	2.8	20/16	DILEEM
1K5	4.2		
2K2	5.8		
4K0	9.5	20/16	DILOOM
5K5	13		
7K5	18		
11K	25	35/30	DILOM
15 K	35		
18K5	42	55/44	DIL1M
22 K	53		
30K	63	90/80	DIL2M
37K	83		
45 K	99	100/-	DIL3M80
55K	121	160/-	DIL4M115
75 K	164		
90K	194	225/-	DILM185
110 K	239	250/-	DILM225
132K	286	300/-	DILM250

Figure 174: DE4-LN... mains chokes
\rightarrow When the frequency inverter is working at its rated current limit, the mains choke causes a reduction of the frequency inverter's maximum output voltage $\left(U_{2}\right)$ to about 96% of mains voltage (U_{LN}).

DV6-340-	Mains current (ILN) of the DV6 without mains choke	Assigned mains choke
075	2.8	DE4-LN3-075
1K5	4.2	DE4-LN3-2K2
2K2	5.8	DE4-LN3-3K0
4K0	9.5	DE4-LN3-4K0
5K5	13	DE4-LN3-7K5
7K5	18	DE4-LN3-11K
11K	25	DE4-LN3-15K
15K	35	DE4-LN3-15K
18K5	42	DE4-LN3-22K
22K	53	DE4-LN3-30K
30K	63	DE4-LN3-45K
37K	83	DE4-LN3-45K
45K	99	DE4-LN3-55K
55K	121	DE4-LN3-75K
75K	164	DE4-LN3-90K
90K	194	DDK3,2-9,2
110K	239	DDK4,0-9,2
132K	286	DDK4,0-9,2

\rightarrow For technical data for the DE4-LN series mains chokes, see installation instructions AWA8240-1711, for those of the DDK series, refer to the main Industrial Switchgear catalogue.
\rightarrow Mains chokes reduce the magnitude of the current harmonics up to about 30% and increase the lifespan of frequency inverters and upstream-connected switching devices.

Radio interference filters

RFI filters have discharge currents to earth, which, in the event of a fault (phase failure, load unbalance), can be higher than the rated values. To avoid dangerous voltages, the filters must be earthed before use.
For discharge currents $\geqq 3.5 \mathrm{~mA}$, VDE 0160 and EN 60335 specify that

- the protective conductor must have a cross-section $\geqq 10 \mathrm{~mm}^{2}$ or
- a second protective conductor must be connected, or
- the continuity of the protective conductor must be monitored.

Figure 175: RFI filter
$\rightarrow \quad$ Radio interference filters DE6-LZ3-013-V4 to
DE6-LZ3-064-V4 can be mounted below (footprint mounting) or - from DE6-LZ3-080-V4 - to the side of the frequency inverter (book-type mounting).

The table below lists radio interference filters with their matching frequency inverters.

DV6-340-	RFI filter	Nominal voltage ΔU_{e} V	Maximum leakage current in rated operation mA	Maximum leakage current under fault conditions mA	Power loss of RFI filter at rated operation w
075	DE6-LZ3-013-V4	$3 \sim 480+10 \%$	< 30	180	12
1K5					
2K2					
4K0					
5K5					
7K5	DE6-LZ3-032-V4			280	14
11K					
15K	DE6-LZ3-064-V4			550	36
18K5					
22K					
30K	DE6-LZ3-080-V4			690	32
37K	DE6-LZ3-115-V4			750	38
45K					
55K	DE6-LZ3-125-V4			750	45
75K	DE6-LZ3-220-V4			380	60
90K					
110K	DE6-LZ3-013-V4			600	50
132K					

Standard form for user defined parameter settings

The DV6 series frequency inverters have programmable parameters. In the free Setpoint columns below, you can list the changes you have made from the default settings.

PNU	Function	Units	Default	Page	Setpoint
A001	Frequency setpoint input through - 00: Potentiometer - 01: Analog inputs 0, 02 or 01 - 02: PNU F001 or A020 - 03: RS 485 serial interface - 04: Optional module in slot 1 - 05: Optional module in slot 2	-	01	123	
A002	Start signal definition through - 01: Input FWD/REV - 02: ON key - 03: RS 485 serial interface - 04: Optional module in slot 1 - 05: Optional module in slot 2	-	01	124	
A003	Base frequency	[Hz]	50	125	
A203	Base frequency (second parameter set)	[Hz]	50	125	
A303	Base frequency (third parameter set)	[Hz]	50	125	
A004	Maximum end frequency	[Hz]	50	125	
A204	Final frequency (second parameter set)	[Hz]	50	125	
A304	End frequency (third parameter set)	[Hz]	50	125	
A005	AT selection - 00: AT input switches between analog input 0 and 01 - 01: AT input switches between analog input 0 and 02	-	00	61	
A006	02 selection - 00: 02 signal only - 01: Sum of signals at 02 and $0 / 01$ without direction reversal - 02 : Sum of signals at 02 and $0 / 01$ with direction reversal	-	00	61	
A011	Frequency at minimum setpoint value (terminal 0-L)	[Hz]	0.00	63	
A012	Frequency at maximum setpoint value (terminal 0-L)	[Hz]	0.00	63	
A013	Minimum setpoint value (terminal 0-L)	[\%]	0	63	
A014	Maximum setpoint value (terminal 0-L)	[\%]	100	63	
A015	Starting frequency (terminal 0-L) - 00: Apply PNU A011 to motor - 01: Apply 0 Hz to motor	-	01	63	
A016	Analog input filter time constant	-	8	63	
A019	Fixed frequency selection - 00: Binary selection through digital inputs FF1 to FF4 - 01: Bitwise selection through digital inputs SF1 to SF7	-	00	70	
A020	Frequency setpoint definition (PNU A001 must be 02)	[Hz$]$	0.00	70	
A220	Frequency setpoint definition (PNU A001 must be 02) (second parameter set)	[Hz]	0.00	70	
A320	Frequency setpoint definition (PNU A001 must be 02) (third parameter set)	[Hz]	0.00	70	

PNU	Function	Units	Default	Page	Setpoint
A021	1st fixed frequency	[Hz]	0.00	70	
A022	Second fixed frequency	[Hz]	0.00	70	
A023	Third fixed frequency	[Hz]	0.00	70	
A024	Fourth fixed frequency	[Hz]	0.00	70	
A025	Fifth fixed frequency	[Hz]	0.00	70	
A026	Sixth fixed frequency	[Hz]	0.00	70	
A027	Seventh fixed frequency	[Hz]	0.00	70	
A028	Eighth fixed frequency	[Hz]	0.00	70	
A029	Ninth fixed frequency	[Hz]	0.00	70	
A030	Tenth fixed frequency	[Hz]	0.00	70	
A031	Eleventh fixed frequency	[Hz]	0.00	70	
A032	Twelfth fixed frequency	[Hz]	0.00	70	
A033	13th fixed frequency	[Hz]	0.00	70	
A034	14th fixed frequency	[Hz]	0.00	70	
A035	15th fixed frequency	[Hz]	0.00	70	
A038	Frequency in jog mode	[Hz]	1.00	80	
A039	Motor stop in jog mode through - 00: Free run - 01: Deceleration ramp - 02: DC braking - 03: Without prior stop signal, motor coasts to halt - 04: Without prior stop signal, stopping with deceleration ramp - 05: Without prior stop signal, stopping with DC braking	-	00	80	
A041	Voltage boost characteristics - 00: Manual - 01: Automatic	-	00	126	
A241	Boost characteristic (second parameter set) - 00: Manual - 01: Automatic	-	00	126	
A341	Boost characteristic (third parameter set) - 00: Manual - 01: Automatic	-	00	126	
A042	Percentage voltage increase with manual boost	[\%]	1.0	126	
A242	Percentage voltage increase with manual boost (second parameter set)	[\%]	1.0	126	
A342	Percentage voltage increase with manual boost (third parameter set)	[\%]	1.0	126	
A043	Maximum boost at $\mathrm{x} \%$ of the base frequency	[\%]	5.0	126	
A243	Maximum boost at $\mathrm{x} \%$ of the base frequency (second parameter set)	[\%]	5.0	126	
A343	Maximum boost at $\mathrm{x} \%$ of the base frequency (third parameter set)	[\%]	5.0	126	

PNU	Function	Units	Default	Page	Setpoint
A044	UIf characteristic - 00 : Constant torque curve - 01: Reduced torque curve - 02: User-definable - 03: SLV control active - 04: 0 Hz SLV control active - 05: Vector control with optional DE6-IOM-ENC module.		00	128	
A244	$\Delta U / f$ characteristic (second parameter set) - 00 : Constant torque curve - 01: Reduced torque curve - 02: User-definable - 03: SLV control active - 04: 0 Hz SLV control active		00	128	
A234	$\Delta U / f$ characteristic (third parameter set) - 00: Constant torque curve - 01: Reduced torque curve - 02: User-definable		00	128	
A045	Output voltage	[\%]	100	128	
A051	DC braking - 00: Inactive - 01: Active		00	130	
A052	DC braking starting frequency	[Hz$]$	0.5	130	
A053	DC braking waiting time on deceleration	[s]	0.0	130	
A054	DC braking torque on deceleration	[\%]	0	130	
A055	DC braking duration on deceleration	[s]	0.0	130	
A056	Behaviour on activation of the DB input - 00 : Starts on activation of the input, ends after PNU A055 - 01 : Runs as long as input is active		01	130	
A057	DC braking torque on acceleration	[\%]	0	130	
A058	DC braking duration on acceleration	[s]	0.0	131	
A059	DC braking frequency	[kHz]	5.0	131	
A061	Maximum operating frequency	[Hz$]$	0.00	132	
A261	Maximum operating frequency (second parameter set)	[Hz]	0.00	132	
A062	Minimum operating frequency	[Hz]	0.00	132	
A262	Minimum operating frequency (second parameter set)	[Hz]	0.00	132	
A063	1st frequency jump	[Hz]	0.00	132	
A064	Jump width of the 1st frequency jump	[Hz]	0.50	132	
A065	Second frequency jump	[Hz]	0.00	132	
A066	Jump width of the second frequency jump	[Hz]	0.50	132	
A067	Third frequency jump	[Hz]	0.00	132	
A068	Jump width of the third frequency jump	[Hz]	0.50	132	
A069	Acceleration pause waiting frequency	[Hz]	0.00	133	
A070	Acceleration pause waiting duration	[s]	0.00	133	
A071	PID control - 00: Inactive - 01: Active		00	137	
A072	P component of the PID control		1.0	138	

PNU	Function	Units	Default	Page	Setpoint
A073	I component of the PID control	[s]	1.0	138	
A074	D component of the PID control	[s]	0.0	138	
A075	Setpoint factor of the PID control	[\%]	1.00	138	
A076	Input actual value signal for PID control - 00: Input OI - 01: Input 0		00	138	
A081	AVR function - 00: Active - 01: Inactive - 02: Inactive during deceleration		02	146	
A082	Motor voltage for AVR function	[V]	230/400	146	
A085	Energy-saving mode - 00: Not active - 01: Active - 02: With fuzzy-logic active		00	147	
A086	Response time in energy-saving mode	[s]	50	147	
A092	Second acceleration time	[s]	15.0	74	
A292	Second acceleration time (second parameter set)	[s]	15.0	74	
A392	Second acceleration time (third parameter set)	[s]	15.0	74	
A093	Second deceleration time	[s]	15.0	74	
A293	Second deceleration time (second parameter set)	[s]	15.0	74	
A393	Second deceleration time (third parameter set)	[s]	15.0	74	
A094	Switch-over from the 1st time ramp to the second time ramp through - 00: Input 2CH - 01: PNU A095 or A096		00	74	
A294	Switch-over from the 1st time ramp to the second time ramp through - 00: Input 2 CH - 01: PNU A095 or A096 (second parameter set)		00	74	
A095	Changeover frequency from first to second acceleration time	[Hz]	0.00	148	
A295	Changeover frequency from first to second acceleration time (second parameter set)	[Hz]	0.00	148	
A096	Changeover frequency from first to second deceleration time	[Hz]	0.00	148	
A296	Changeover frequency from first to second deceleration time (second parameter set)	[Hz]	0.00	148	
A097	Acceleration characteristic - 00: Linear - 01: S-curve - 02: U curve - 03: Inverted U curve		00	150	
A098	Deceleration characteristic - 00: Linear - 01: S-curve - 02: U curve - 03: Inverted U curve		00	150	
A101	Analog input OI starting frequency	[Hz]	0.00	64	
A102	Analog input OI end frequency	[Hz]	0.00	64	

PNU	Function	Units	Default	Page	Setpoint
A103	Analog input OI starting current	[\%]	20	64	
A104	Analog input OI end current	[\%]	100	64	
A105	Analog input OI condition for starting frequency 00: Start at PNU A101 02: Start at 0 Hz		01	64	
A111	Analog input 02 starting frequency	[Hz]	0.00	65	
A112	Analog input 02 end frequency	[Hz]	0.00	65	
A113	Analog input 02 starting voltage	[\%]	-100	65	
A114	Analog input 02 end voltage	[\%]	100	65	
A131	Curvature of acceleration characteristic, values from 01 to 10		02	150	
A132	Curvature of deceleration characteristic, values from 01 to 10		02	150	

PNU	Function	Units	Default	Page	Setpoint
b001	Restart mode - 00: Fault message - 01: 0 Hz Start - 02: Synchronization to current motor speed and acceleration - 03: Synchronization and deceleration		00	153	
b002	Permissible power failure duration	[s]	1.0	153	
b003	Waiting time before restart	[s]	1.0	153	
b004	Fault message issued immediately - 00: No fault on intermittent mains failure - 01: Fault on intermittent mains failure - 02: No fault on intermittent mains failure at standstill and deceleration		00	153	
b005	Number of restart attempts - 00: 16 restart attempts - 01: Unlimited number of restart attempts		00	153	
b006	Mains phase failure detection - 00: Not active - 01: Active		00	153	
b007	Synchronization frequency on return of mains power	[Hz]	0.00	153	
b012	Tripping current for electronic motor protection device	[A]	$I_{\text {e }}$ (inverter)	156	
b212	Tripping current for electronic motor protection device (second parameter set)	[A]	$I_{\text {e }}$ (inverter)	156	
b312	Tripping current for electronic motor protection device (third parameter set)	[A]	$I_{\text {e }}$ (inverter)	156	
b013	Characteristic for electronic motor protection device - 00: Enhanced protection - 01: Normal protection - 03: User-definable protection		01	156	
b213	Characteristic for electronic motor protection device (second parameter set) - 00: Enhanced protection - 01: Normal protection - 03: User-definable protection		01	156	

PNU	Function	Units	Default	Page	Setpoint
b313	Characteristic for electronic motor protection device (third parameter set) - 00: Enhanced protection - 01: Normal protection - 03: User-definable protection		01	156	
b015	Frequency 1 for user-definable motor protection characteristic	[Hz]	0	156	
b016	Tripping current 1 for user-definable motor protection characteristic	[A]	0.0	156	
b017	Frequency 2 for user-definable motor protection characteristic	[Hz]	0	156	
b018	Tripping current 2 for user-definable motor protection characteristic	[A]	0.0	156	
b019	Frequency 3 for user-definable motor protection characteristic	[Hz]	0	156	
b020	Tripping current 3 for user-definable motor protection characteristic	[A]	0.0	156	
b021	Motor current limitation 1 - 00: Inactive - 01: Active in every operating status - 02: Inactive during acceleration, otherwise active - 03: Active in every operating state; in regenerative operation, the current is increased - 04: Inactive during acceleration; in regenerative operation, the current is increased		01	157	
b022	Tripping current 1 for motor current limitation	[A]	$I_{\mathrm{e}} \times 1.5$	157	
b023	Time constant 1 of motor current limitation	[s]	1.00	157	
b024	Motor current limitation 2 - 00: Inactive - 01: Active in every operating status - 02: Inactive during acceleration, otherwise active - 03: Active in every operating state; in regenerative operation, the current is increased - 04: Inactive during acceleration; in regenerative operation, the current is increased		1	158	
b025	Tripping current 1 for motor current limitation	[A]	$I_{\mathrm{e}} \times 1.5$	158	
b026	Time constant 1 of motor current limitation	[s]	1.0	158	
b031	Software dependent parameter protection - 00: Via SFT input; all functions inhibited - 01: Via SFT input; function F01 possible - 02: Without SFT input; all functions inhibited - 03: Without SFT input; function F01 possible - 10: Extended parameters adjustable in RUN mode		01	159	
b034	Running time or Mains On time signal	[h]	0	114	
b035	Inhibit direction 00 : Motor can run in both directions 01: Motor can only run clockwise 02: Motor can only run anticlockwise		00	162	
b036	Voltage ramp to starting frequency - 00: Start without voltage reduction - 01: Minimum voltage reduction, approx. 6 ms - ... - 06: Maximum voltage reduction, approx. 36 ms		06	162	

PNU	Function	Units	Default	Page	Setpoint
b037	Display mode - 00: All parameters - 01: Relevant parameters - 02: Parameters saved under PNU U001 to U012		00	164	
b040	Selection of torque limitation - 00: All four quadrants - 01: Changeover to digital inputs TRQ1 and TRQ2 - 02: Analog input 0 - 03: Optional module in slot 1 - 04: Optional module in slot 2		00	95	
b041	Torque limit, first quadrant	[\%]	150	95	
b042	Torque limit, second quadrant	[\%]	150	95	
b043	Torque limit, third quadrant	[\%]	150	95	
b044	Torque limit, fourth quadrant	[\%]	150	95	
b045	Response on reaching the torque limit - 00: Wait with acceleration or deceleration until below limit - 01: No response		00	95	
b046	Reverse rotation protection - 00: Anticlockwise operation allowed - 01: Anticlockwise operation not allowed		00	95	
b050	Controlled deceleration - 00: Active - 01: Not active		00	161	
b051	Starting voltage for deceleration	[V]	0.0	161	
b052	Voltage for ramp stop	[V]	0.0	161	
b053	Deceleration time for ramp stop	[s]	1.00	161	
b054	Frequency jump on ramp stop	[Hz]	0.00	161	
b080	Gain factor, analog output AM		180	57	
b081	Gain factor, analog output FM		60	59	
b082	Increased starting frequency (e.g. with high level of friction)	[Hz]	0.50	104	
b083	Carrier frequency	[kHz]	5.0	164	
b084	Initialization causes - 00: Clearing of the fault history register - 01: Selection of default settings - 02: Deleting the fault history register and restoring the default settings		00	165	
b085	Country version - 00: Japan - 01: Europe - 02: USA		01	165	
b086	Frequency factor for indication through PNU d07		1.0	165	
b087	OFF key - 00: Always active - 01: Not active with control through the FWD/REV terminals		00	165	
b088	Motor restart after removal of the FRS signal - 00: With 0 Hz - 01: With current motor speed		00	166	

PNU	Function	Units	Default	Page	Setpoint
b090	Permissible relative percentage duty factor for built-in braking transistor	[\%]	0.00	167	
b091	Type of motor stop when Off button is pressed - 00: Braking/deceleration ramp - 01: Free run stop		00	168	
b092	Configuration of fan operation - 00: Fan always switched on - 01: Fan switched on only when motor running		00	168	
b095	Enable built-in braking transistor - 00: Not enabled - 01: Enabled in RUN mode - 02: Always enabled		00	167	
b096	Voltage threshold for braking transistor	[V]	720	167	
b098	Selection of PCT or NTC - 00: No temperature monitoring - 01: PTC - 02: NTC		00	82	
b099	Resistance threshold for thermistor input	[Ω]	3000	82	
b100	User-definable U/f characteristics, frequency coordinates 1	[Hz]	0	128	
b101	User-definable U/f characteristics, voltage coordinates 1	[V]	0.0	128	
b102	User-definable U/f characteristics, frequency coordinates 2	[Hz]	0	128	
b103	User-definable U/f characteristics, voltage coordinates 2	[V]	0.0	128	
b104	User-definable U/f characteristics, frequency coordinates 3	[Hz]	0	128	
b105	User-definable U/f characteristics, voltage coordinates 3	[V]	0.0	128	
b106	User-definable Ulf characteristics, frequency coordinates 4	[Hz]	0	128	
b107	User-definable U/f characteristics, voltage coordinates 4	[V]	0.0	128	
b108	User-definable U/f characteristics, frequency coordinates 5	[Hz]	0	128	
b109	User-definable U/f characteristics, voltage coordinates 5	[V]	0.0	128	
b110	User-definable U/f characteristics, frequency coordinates 6	[Hz]	0	128	
b111	User-definable V/f characteristics, voltage coordinates 6	[V]	0.0	128	
b112	User-definable U/f characteristics, frequency coordinates 7	[Hz]	0	128	
b113	User-definable U/f characteristics, voltage coordinates 7	[V]	0.0	129	
b120	Brake control - 00: Not active - 01: Active		00	170	
b121	Brake released confirmation waiting time	[s]	0.00	170	
b122	Waiting time before acceleration	[s]	0.00	170	

PNU	Function	Units	Default	Page	Setpoint
b123	Waiting time before stop	[s]	0.00	170	
b124	Waiting time to brake confirmation	[s]	0.00	170	
b125	Brake enable frequency	[Hz]	0.00	170	
b126	Brake enable current	[A]	$I_{\text {e }}$	170	

PNU	Function	Units	Default	Page	Setpoint
C001	Function of digital input 1 - 01: REV, anticlockwise operation - 02: FF1, first fixed frequency input - 03: FF2, second fixed frequency input - 04: FF3, third fixed frequency input - 05: FF4, fourth fixed frequency input - 06: JOG, jog mode - 07: DB, DC braking - 08: SET, second parameter set - 09: 2 CH , second time ramp - 11: FRS, controller inhibit - 12: EXT, external fault - 13: USP, unattended start protection - 14: CS, heavy mains starting - 15: SFT, parameter protection - 16: AT, Analog input selection - 17: SET3, third parameter set - 18: RST, reset - 20: STA, three-wire control start signal - 21: STP, three-wire control stop signal - 22: STA, three-wire control direction - 23: PID, activate PID control - 24: PIDC, reset I component of PID control - 26: CAS, tacho-generator with vector control - 27: UP, remote access/acceleration - 28: DWN, remote access/deceleration - 31: OPE, setpoint through keypad - 32 to 38 : Bitwise fixed frequencies - 39: OLR, change over current limit - 40: Torque limitation active - 41: TRQ1, torque limitation 1 active - 42: TRQ2, torque limitation 2 active - 43: PPI, PI to P control changeover - 44: BOK, brake enable confirmation - 45: ORT, direction of rotation - 46: LAC, ramp function Off - 47: PCLR, delete positioning deviation - 48: STAT, setpoint definition through optional module - NO: No function		18	66	
C002	Function of digital input 2 (values \rightarrow PNU C001)		16	66	
C003	Function of digital input 3 (values \rightarrow PNU C001)		06	66	
C004	Function of digital input 4 (values \rightarrow PNU C001)		11	66	
C005	Function of digital input 5 (values \rightarrow PNU C001)		09	66	
C006	Function of digital input 6 (values \rightarrow PNU C001)		03	66	
C007	Function of digital input 7 (values \rightarrow PNU C001)		02	66	
C008	Function of digital input 8 (values \rightarrow PNU C001)		01	66	

PNU	Function	Units	Default	Page	Setpoint
C011	Digital input 1 - 00: Make contact - 01: Break contact		00	67	
C012	Digital input 2 (values \rightarrow PNU C011)		00	67	
C013	Digital input 3 (values \rightarrow PNU C011)		00	67	
C014	Digital input 4 (values \rightarrow PNU C011)		00	67	
C015	Digital input 5 (values \rightarrow PNU C011)		00	67	
C016	Digital input 6 (values \rightarrow PNU C011)		00	67	
C017	Digital input 7 (values \rightarrow PNU C011)		00	67	
C018	Digital input 8 (values \rightarrow PNU C011)		00	67	
C019	Digital input FW (values \rightarrow PNU C011)		00	67	
C021	Signal on digital output 11 - 00: RUN signal - 01: FA1, frequency reached - 02: FA2, frequency exceeded - 03: OL, overload - 04: OD, PID deviation exceeded - 05: AL, fault - 06: FA3, frequency reached (1) - 07: OTQ, torque reached (exceeded) - 08: IP, mains failure, immediate stop - 09: UV, undervoltage - 10: TRQ, torque limitation - 11: ONT, Mains On time exceeded - 12: RNT, Running time exceeded - 13: THM, motor thermal overload - 19: BRK, enable signal for external brake - 20:BER, brake fault - 21: ZS, zero frequency - 22: DSE, speed deviation exceeded - 23: POK, positioning - 24: FA4, frequency exceeded (2) - 25: FA5, frequency reached (2) - OL2, overload alarm 2		01	101	
C022	Signal at digital output 12 (values \rightarrow PNU C021)		00	101	
C023	Signal at digital output 13 (values \rightarrow PNU C021)		03	101	
C024	Signal at digital output 14 (values \rightarrow PNU C021)		07	101	
C025	Signal at digital output 15 (values \rightarrow PNU C021)		08	101	
C026	Signal at relay terminals K11-K12 (values \rightarrow PNU C021)		05	118	
C027	Output, FM output - 00: Output frequency, PWM signal - 01: Output current - 02: Torque, SLV control only - 03: Output frequency, FM signal - 04: Output voltage - 05: Inverter input power - 06: Thermal load ratio - 07: Ramp frequency		00	59	

PNU	Function	Units	Default	Page	Setpoint
C028	Output, AM output - 00: Output frequency, PWM signal - 01: Output current - 02: Torque, SLV control only - 04: Output voltage - 05: Inverter input power - 06: Thermal load ratio - 07: Ramp frequency		00	58	
C029	Output, AMI output (values \rightarrow PNU C028)		00	59	
C031	Digital output 11 - 00: Make contact - 01: Break contact		00	101	
C032	Digital output 12 (values \rightarrow PNU C031)		00	101	
C033	Digital output 13 (values \rightarrow PNU C031)		00	101	
C034	Digital output 14 (values \rightarrow PNU C031)		00	101	
C035	Digital output 15 (values \rightarrow PNU C031)		00	101	
C036	Relay terminals K11-K12, signalling relay (values \rightarrow PNU C031)		01	118	
C040	Overload alarm signal - 00: Always - 01: Only at constant speed		01	105	
C041	Threshold for overload alarm at digital outputs 11 to 15	[A]	$I_{\text {e }}$	105	
C042	Frequency from which FA2 is switched on during acceleration	[Hz]	0.00	103	
C043	Frequency from which FA2 is switched off during deceleration	[Hz]	0.00	103	
C044	PID control deviation (from the maximum setpoint value)	[\%]	3.0	106	
C045	Frequency from which FA3/FA5 is switched on during acceleration	[Hz]	0.00	103	
C046	Frequency from which FA4/FA5 is switched off during deceleration	[Hz]	0.00	103	
C055	Torque threshold, clockwise in drive mode	[\%]	100	110	
C056	Torque threshold, anticlockwise in regenerative mode	[\%]	100	110	
C057	Torque threshold, anticlockwise in drive mode	[\%]	100	110	
C058	Torque threshold, clockwise in regenerative mode	[\%]	100	110	
C061	Thermal overload warning	[\%]	80	115	
C062	Fault message, digital, to digital outputs - No output - 3 -bit encoded output to terminals 11 to 13 - 4-bit encoded output to terminals 11 to 14		00	116	
C063	Frequency threshold for digital output ZS	[Hz]	0.00	109	

PNU	Function	Units	Default	Page	Setpoint		
d001	Output frequency display	-	-	120	-	-	-
d002	Output current display	-	-	120	-	-	-
d003	Direction of rotation display	-	-	120	-	-	-
d004	PID feedback display	-	-	120	-	-	-
d005	Digital inputs 1 to 8 status	-	-	120	-	-	-
d006	Status of digital outputs 11 to 15	-	-	120	-	-	-
d007	Scaled output frequency	-	-	120	-	-	-
d012	Motor torque	-	-	120	-	-	-
d013	Output voltage	-	-	120	-	-	-
d014	Electrical input power	-	-	120	-	-	-
d016	Running time	-	-	120	-	-	-
d017	Power on time	-	-	120	-	-	-
d080	Entire count of malfunctions which occurred	-	-	120	-	-	-
d081	First fault (last fault which occurred)	-	-	120	-	-	-
d082	Second fault	-	-	120	-	-	-
d083	Third fault	-	-	120	-	-	-
d084	Fourth fault	-	-	120	-	-	-
d085	Fifth fault	-	-	120	-	-	-
d086	Sixth fault	-	-	120	-	-	-
d090	Warning	-	-	120	-	-	-

PNU	Function	Units	Default	Page	Setpoint
F001	Frequency setpoint value	[Hz]	0.0	121	
F002	Acceleration time 1	[s]	30.0	121	
F202	Acceleration time 1 (second parameter set)	[s]	30.0	121	
F302	Acceleration time 2 (third parameter set)	[s]	30.0	121	
F003	Deceleration time 1	[s]	30.0	122	
F203	Deceleration time 1 (second parameter set)	[s]	30.0	122	
F303	Deceleration time 1 (third parameter set)	[s]	30.0	122	
F004	Direction of rotation - 00: Clockwise rotation - 01: Anticlockwise rotation	-	$\begin{aligned} & \hline 00 \\ & \text { (clockwise) } \end{aligned}$	122	

PNU	Function	Units	Default	Page	Setpoint
H001	Autotuning mode - 00 : Autotuning not active - 01: Autotuning/motor operation - 02: Autotuning/motor standstill		00	173	
H002	Selection of motor data - 00: Standard motor - 01: Use autotuning data		00	173	
H202	Selection of motor data (second parameter set) - 00: Standard motor - 01: Use autotuning data		00	173	
H003	Motor rating: 0.2 to 160 kW	[kW]	Depending	173	
H203	Motor rating: 0.2 to 160 kW (second parameter set)	[kW]	on inverter model	173	
H004	Number of motor poles: 2/4/6/8		4	173	
H204	Number of motor poles (second parameter set)		4	173	
H005	Motor constant K_{p}		1.59	173	
H205	Motor constant K_{p} (second parameter set)		1.59	173	
H006	Motor stabilization constant		100	173	
H206	Motor stabilization constant (second parameter set)		100	173	
H306	Motor stabilization constant (third parameter set)		100	173	
H020	Motor constant R_{1}	[Ω]	Depending	173	
H220	Motor constant R_{1} (second parameter set)	[Ω]	on inverter model	173	
H021	Motor constant R_{2}	[Ω]		173	
H221	Motor constant R_{2} (second parameter set)	[Ω]		173	
H022	Motor constant L	[mH]		173	
H222	Motor constant L (second parameter set)	[mH]		173	
H023	Motor constant I_{0}	[A]		173	
H223	Motor constant I_{0} (second parameter set)	[A]		173	
H024	Motor constant /	[Nm]		173	
H224	Motor constant /(second parameter set)	[Nm]		173	
H030	Autotuning: Motor constant R_{1}			173	Do not change these parameters!
H230	Autotuning: Motor constant R_{1} (second parameter set)			173	
H031	Autotuning: Motor constant R_{2}			173	
H231	Autotuning: Motor constant R_{2} (second parameter set)			173	
H032	Autotuning: Motor constant L			173	
H232	Autotuning: Motor constant L (second parameter set)			173	
H033	Autotuning: Motor constant I_{0}			173	
H233	Autotuning: Motor constant I_{0} (second parameter set)			173	
H034	Autotuning: Motor constant /			173	
H234	Autotuning: Motor constant J (second parameter set)			173	
H050	P component of PI control	[\%]	100.0	175	
H250	P component of PI control (second parameter set)	[\%]	100.0	175	
H051	I component of PI control	[\%]	100.0	175	
H251	I component of PI control (second parameter set)	[\%]	100.0	175	

PNU	Function	Units	Default	Page	Setpoint
H052	P component of P control		1.00	175	
H252	P component of P control (second parameter set)		1.00	175	
H060	Magnetization current limitation, 0 Hz SLV control	[\%]	100	175	
H260	Magnetization current limitation, 0 Hz SLV control (second parameter set)	[\%]	100	175	
H070	P component of the PI controller with changeover	[\%]	100.0	175	
H071	I component of the PI controller with changeover	[\%]	100.0	175	
H072	P component of the P controller with changeover		1.00	175	

PNU	Function	Units	Default	Page	Setpoint
U001	User-defined parameters		no	176	
U002			no	176	
U003			no	176	
U004			no	176	
U005			no	176	
U006			no	176	
U007			no	176	
U008			no	176	
U009			no	176	
U010			no	176	
U011			no	176	
U012			no	176	

Index

A Abbreviations 5
Acceleration 84
Acceleration characteristic 149
Acceleration pause 133
Acceleration ramp 142
Acceleration time 1 121
Actual value
PID configuration 142
Signal 140
AL - fault signal 107
AM - analog voltage output 57
AMI - analog current output 57
Anticlockwise rotation 68
AT - analog input changeover 73
Automatic restart 151
Automatic voltage regulation (AVR) 146
Autotuning 171
B Base frequency 125
Basic parameters 48
BER - brake fault 108
BOK - brake enable confirmation 100
Boost, voltage 126
Brake
Enable confirmation (BOK) 100
External 169
Fault (BER) 108
Release (BRK) 108
Braking
Duration 166
Resistor 167
Transistor 166
BRK - release brake 108
Bypass 37
C Cable cross-sections 15
Cables and fuses 194
CAS - Change over vector parameters 81
Clockwise rotation 68
Coasting (free run stop) 75
Component
Differential 135
Integral 135
Proportional 135
Connection
Electrical 26
Power section 28
Supply voltage 32
Controller
Deviation signal (OD) 106
Inhibit and coasting (FRS) 75
PI 175
PID 134
CS - heavy mains starting 91
Current
Limit 157
Limit changeover 90
Output, analog 59
D Dahlander pole-changing motors 35
DB - activate DC braking 88
DC braking 88, 130
Debugging 168
Deceleration 84
Deceleration characteristic 149
Deceleration ramp 142
Deceleration time 1 122
Default settings 165
Differential component 135
Digital
Input 66
Output 101
Dimensions 193
Direction
Inhibit 162
Direction of rotation 122
Display
Frequency factor 165
Parameters 48
Display mode 163
Duty factor, relative (braking transistor) 166
dv/dt filters 37
DWN - remote control, deceleration 84
E Earthing 24
Electronic motor protection 154
EMC
-compliant connection 24
compliant installation 21
-compliant setup 23
Interference class 18
Measures 18
End frequency
Maximum 125
Energy-saving mode 147
Environmental conditions 13
EXT - external fault message 76
Extended (RUN mode) 83, 159
F F/R - direction reversal (3-wire) 96
FA1 - frequency reached 102
FA2 - frequency exceeded 102
FA3 - frequency reached 102
FA4 - frequency exceeded (2) 102
FA5 - frequency reached (2) 102
Fan control 168
Fault
Message, external 76
Fault message, digital 116
Fault messages 177
Fault signal 107
Features of the frequency inverters 11
FF1 to FF4 69
Fixed frequency 69
Bitwise selection 71
Display 121
Input 121
Selection 69
Flow control 144
FM - analog frequency output 57
Frequency
Characteristic 126
Display value 121
Factor 165
Fixed 69
Input value 121
Jumps 142
Operating range 132
Output, analog 59
Reset (motor potentiometer) 84
Setpoint definition 123
Setpoint value 121
Zero (ZS) 109
FRS - free run stop 166
FRS - free run stop (coasting) 75
Fuses 15, 194
FWD - start/stop clockwise operation 68
G Guarantee 12
I IEC/EN 61800-3 18
Initialization 165
Input
Analog 61
Changeover, analog (AT) 73
Digital 66
NTC thermistor 82
PTC thermistor 82
Installation 19
Installation dimensions 19
Integral component 135
Interference
Emitted 18
Interference filter 197
IP - instant stop 113
IT network 15
J JOG - jog mode 79
Jog mode 79
K K11, K12, K14 117
P p.f. correction equipment 15
Parallel connection of multiple motors 11
Parallel motor connection 36
Parameter
Groups, extended 48
Protection 83, 159
Set, second 86
Set, third 86
Parameters
Changing 48
Display 48
PID 136
Vector, change over (CAS) 81
PE conductor 15
Personnel protection 16
PI controller 175
PID
Actual value configuration 142
Controller 134
Controller deviation 106
Flow control 144
Parameters 136
Scaling 142
Scaling adjustment 141
Setpoint definition 140
Setpoint value configuration 142
Temperature control 145
PID - activate/deactivate 97
PID control
Active 137
Inactive 137
PIDC - reset integral component of PID control 97
Pole-changing three-phase motors 35
Power section connection 28
Power terminals
Arrangement 29
Conductor cross-section 31
Connection 31
Tightening torques 31
PPI - changeover PI to P control 98
Proportional component 135
PTC thermistor input 82
Pulse frequency 164
R Radio interference filter 17, 197
Radio interference suppression 18
Relative duty factor (braking transistor) 166
Reluctance motor 35
Reset 78
Residual-current circuit-breaker 16
Restart, automatic 151
REV - start/stop anticlockwise operation 68
Reversing direction 35
RFI
Filter 22
RNT - running time exceeded 114
RST - Reset 78
RUN - run signal 104
RUN mode $46,48,83,159$
Running time exceeded (RNT) 114
S Screening 24
Service 12
Servo-motors 35
SET - use second parameter set 86
SET3 - use third parameter set 86
Setpoint value
Matching, analog 63
PID configuration 142
SF1 to SF7 - bitwise fixed frequency selection 71
SFT - software protection 83
Signalling relay
Terminals 117
Sinusoidal filter 36, 37
Slip-ring motor 35
SLV - sensorless vector control 171
STA - pulse type (3-wire) 96
Start signal 123
Starting
Behaviour 162
Frequency 162
Initial 45
STP - pulse stop (3-wire) 96
Supply voltage
Connection 32
Switching on the output 11
Symbols 5
Synchronous motors 35
T Temperature control 145
TH - PTC/NTC thermistor input 82
THM - motor thermal overload 115
Three-wire control (STA) 96
Tightening torques 31
Time ramp 148
Time ramp, second 74
TL - activate torque limitation 94
TN network 15
Torque
Exceeded (OTQ) 110
limitation (TL) 94
Limitation (TRQ) 111
Troubleshooting 183
TRQ - torque limitation 111
TRQ1 - torque selection, bit 1 94
TRQ2 - torque selection, bit 2 94
TT network 15
Type code 8
Type designation 8
U UDC - remote control, reset frequency 84
Unattended start protection 77
Universal RCCB 16
UP - remote control, acceleration 84
USP - unattended start protection 77
UV - undervoltage 113
V Vector parameters 81
Voltage
Boost 126
Characteristic 126
Output 57
Ramp. 162
Regulation, automatic 146
W Weights 193
Z ZS - frequency is zero 109

[^0]: 1) If SLV control is active, you should set the pulse frequency to at least 2.1 kHz with PNU b083 (\rightarrow Section "Pulse frequency", Page 164).
[^1]: (1) Brake Released signal

[^2]: 1) Phase failure detection can not be used if you are using the DV6 frequency inverter with an RFI filter.
[^3]: 1) The frequency jump is automatically set to the lowest frequency jump (frequency jump - jump width).
