

DIL...M

1 Main Contactor - Page 3/4
Main Contacts
$3 \& 4$ power poles (DIL 00M)
3 pole + 4th pole side-mounted (DIL OM, 1M, 2M)
Magnet System
AC Coil Range: $12-600 \mathrm{~V}, 50,60,50 / 60 \mathrm{~Hz}$
DC Coil Range: 12 - 250 V DC
Coils also available for non-standard voltages
Added Reliability
Standard AC coils are dual voltage, each optimized at 60 Hz and 50 Hz . Example: $120 \mathrm{~V} 60 \mathrm{~Hz} / 110 \mathrm{~V} 50 \mathrm{~Hz}$ Coils are also available in single voltage, single frequency; single voltage, dual frequency and DC. Magnet system characteristics for standard AC coils feature a broader response range than required by standards:
Pull-in: $80-110 \%$, Drop-out: $40-60 \%$ of coil rating.

2,3,8 Accessories - Page 3/35

Pneumatic timer module
Mechanical latch module (for DIL 00M, 00AM)
Interface modules (to enable energizing from low level sources)
Surge Suppressors
Mechanical Interlock

4 Add-on Power Pole - Page 3/36
$4^{\text {TH }}$ power pole can be added on to contactors type DIL OM through DIL 2M.

6,7,9 Auxiliary Contacts - Page 3/35

Maximum 5
Top-mounted contacts, $2 \& 4$ pole
Side-mounted contacts, $1 \& 2$ pole (not for DIL 00(A)M)
Time delayed contacts, 1 N.O. \& 1 N.C.
Overlapping contacts, 1 Early Make, 1 Late Break
Safety feature - Positively driven auxiliary contacts
In accordance with ZH 1/457 safety circuit requirements:
All N.O. \& N.C. contacts can never be simultaneously closed, with the exception of overlapping contacts.
For contactor type DIL 0(A)M, 1(A)M, 2(A)M: Only side-mounted auxiliary contacts.

Mounting

Modularly designed system, available as components or as completely assembled units
Provisions for both Panel and DIN rail mounting
All terminal and mounting screws, for both contactors and overload relays, can be fastened with the identical screwdriver (Size 2 posidrive)
Finger-safe termination design for compliance with worldwide standards
Screw-clamp terminal connections for more secure tightening of conductors
Fast-on connectors available for more convenient control and coil circuit tap-offs

Contactors - DIL...M
AC Operated

Note: For larger sizes please consult Moeller Electric.

Accessory and Ordering Guide

DIL 3M 80, 4M 115

1. Overload Relay
2. Surge Suppressor Accessories
Page 4/4
Page $3 / 38$
Page $3 / 35$

Energization options for contactors DIL M185... 500 with electronically controlled magnet systems

Conventionally:
Using terminals A1 - A2 for supply feed

Directly from a PLC output: Using terminals A3-A4 to connect to the PLC

Using low power sources: Using terminals A10 - A11 for connection to low power sources such as limit switches, sensors, solid state relays etc...

DIL M 185... 500
Accessories
Page 3/36

For enclosed contactor information, consult Moeller Electric Corporation.

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$

Stock Coil Voltages	
$24 \mathrm{~V} 60 \mathrm{~Hz}($ through DIL 4M 115)	12 VDC (DIL EM only)
$120 \mathrm{~V} 60 \mathrm{~Hz} / 110 \mathrm{~V} 50 \mathrm{~Hz}$	24 V DC (through DIL 4M 115)
208 V 60 Hz	120 V DC
$240 \mathrm{~V} 60 \mathrm{~Hz} / 230 \mathrm{~V} 50 \mathrm{~Hz}$	
$480 \mathrm{~V} 60 \mathrm{~Hz} / 415 \mathrm{~V} 50 \mathrm{~Hz}$ 600 V 60 Hz	For a complete listing of
	see page 3/46

How to Order

To Order Specify:	Example: 10 HP @ 460 V AC, 3 PH contactor with 1 NO and 1NC standard auxiliary contacts and 120 VO 60 Hz coil 1	Type Number 2
Accessories		
3	Coil Voltage	Type Number

Contactors - Reversing, System DIUL

Note: Reversing contactors are provided standard with a mechanical interlock and minimum 1NO and 1 NC auxiliary contact per contactor (1 NC contact per contactor is normally used as an electrical interlock).

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$

7

Accessory and Ordering Guide

For enclosed contactor information, consult Moeller Electric Corporation.

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$

Stock Coil Voltages	
24 V 60 Hz (through DIUL 120 V $60 \mathrm{~Hz} / 110 \mathrm{~V} 50 \mathrm{~Hz}$ 208 V 60 Hz 240 V 60 Hz / 230 V 50 Hz 480 V 60 Hz / 415 V 50 Hz 600 V 60 Hz	115) For a complete listing of standard and special coils, see page 3/46

How to Order

To Order Specify:	Example: 10 HP @ $460 \mathrm{VAC}, 3$ PH reversing contactors with 1 NO and 1 NC standard auxiliary contacts and 120 V 60 Hz coil 1	Type Number
2	Accessories	
3	Coil Voltage	Type Number

Note: For larger sizes please consult Moeller Electric.

Accessory and Ordering Guide

DIL 3M 80, 4M 115

1. Overload Relay
2. Surge Suppressor Accessories
Page 4/4
Built-in Page $3 / 35$

Energization options for contactors DIL M185... 500 with electronically controlled magnet systems

Conventionally:
Using terminals A1...A2 for supply feed

Directly from a PLC output: Using terminals A3...A4 to connect to the PLC

Using low power sources: Using terminals A10...A11 for connection to low power sources such as limit switches, sensors, solid state relays etc...

. Overload relay
Page 4/2
. Interface module
3. Pneumatic Timer Module
4. Mechanical Latching Module
5. 4th Power pole (DIL OM-G...2M-G) Accessories

Page 3/43
Page 3/40
Page 3/40
Page 3/36
Page 3/35

DIL M 185... 500
Accessories
Page 3/36

For enclosed contactor information, consult Moeller Electric Corporation.

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$

Stock Coil Voltages	
DIL EM-G:	$12,24,110 \mathrm{VDC}$
DIL 00M-G through 4M 115:	$24,48,120,240 \mathrm{~V} \mathrm{DC}$
See page which may require use of a DC	

How to Order

1	2		3		6	7	6	7
The following DIL...M(-G) contactors are identical to the ones shown on pages $3 / 4 \& 3 / 8$. Below are the DC motor horsepower ratings associated to each type (these are not shown on pages $3 / 4 \& 3 / 8$).	Rating data UL/CSA maximum Horsepower rating (HP) 3 Poles		Standard auxiliary contacts		Type Important: Add coil voltage and frequency from page $3 / 46$ $3 / 47$ to end of type. AC OPERATED	Price	Type Important: Add coil voltage from page $3 / 46$ 3/47 to end of type. DC OPERATED	Price
	$\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	DIL OOM DIL OOM-10 DIL OOM-01 DIL OOM 4		DIL OOM-G DIL OOM-G-10 DIL 00M-G-01 DIL OOM 4-G	
	$\begin{aligned} & 11 / 2 \\ & 11 / 2 \\ & 11 / 2 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	DIL OOAM DIL 00AM-10 DIL 00AM-01		DIL OOAM-G DIL 00AM-G-10 DIL 00AM-G-01	
lix_{x}	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	DIL OM DIL OAM	$\begin{array}{ll} \stackrel{\otimes}{\infty} & \stackrel{\AA}{\infty} \\ \stackrel{\rightharpoonup}{3} & \stackrel{\rightharpoonup}{3} \end{array}$	DIL OM-G DIL OAM-G	
	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		DIL 1M DIL 1AM		DIL 1M-G DIL 1AM-G	
	$\begin{aligned} & 71 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { DIL 2M } \\ & \text { DIL 2AM } \end{aligned}$		DIL 2M-G DIL 2AM-G	
7	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	DIL 3M 80 DIL 4M 115		DIL 3M 80 DIL 4M 115	

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$

Stock Coil Voltages	
24 V 60 Hz	
$120 \mathrm{~V} 60 \mathrm{~Hz} / 110 \mathrm{~V} 50 \mathrm{~Hz}$	
$208 \mathrm{~V} 60 \mathrm{~Hz} / 220 \mathrm{VDC}$	
$240 \mathrm{~V} 60 \mathrm{~Hz} / 220 \mathrm{~V} 50 \mathrm{~Hz}$	

See page $3 / 46$ for other available coil voltages. Some DC coils may require use of a DC interposing relay.

General

Moeller Electric's DIL "Universal" contactors can provide a cost-effective solution for motor switching in applications that do not require the full modularity of DIL...M contactors. They are UL listed and CSA certified and in compliance with IEC/EN 60947 standards. Universal Contactors are also CE marked. 2NO and 2NC auxiliary contacts are provided standard for each contactor. Each auxiliary contact can be reversed to achieve $3 \mathrm{NO}+1 \mathrm{NC}$, $1 \mathrm{NO}+3 \mathrm{NC}$ or 4 NC contact configurations. Optional NO-early make and NC-late break contacts are also available.

How to Order

| To Order Specify: | Example: 100 HP @ 460 VAC (column 1), 3 PH contactor,
 2NO and 2NC auxiliary contacts and 120 V 60 Hz coil |
| :--- | :---: | :---: |
| 1 Type Number
 2 Coil Voltage Type Number | Coil Voltage |

Starters - Ordering information

At Moeller Electric, everything starts with quality and service.

Moeller Electric's line of heavy duty starters are designed to withstand the most severe applications. They are built to meet your requirements, whether for installation across the street or across the ocean. Whatever the application, nearby Moeller Electric technical experts stand ready to help you select the right combination of components for the job.

The following pages list the most popular starter types and accessories. If you require a modification that you do not see here, just give us a call and we will be most pleased to discuss your needs.

For quality starters and quick delivery, there is no better place to start looking than Moeller Electric.

Magnetic starter ordering information.

Moeller Electric magnetic motor starters utilize reliable Type DIL contactor(s) and precision Type \mathbf{Z} bimetallic overload relay(s). The starter catalog numbers are a modular representation of the main starter components and make it easy to see at a glance, what is actually being provided.

For your convenience, the buildup of catalog numbers for the most frequently used starters are explained on this page.
Magnetic starter catalog number identification

A - Starter Type

DIL $=$ Non-reversing
DIUL = Reversing
$\mathrm{M}=$ Combination
MW = Combination Reversing
$2 \mathrm{~S}=$ Two Speed
AT = Autotransformer
SD = Star Delta

B - Contactor Frame Size

Moeller Electric Type DIL contactors are available in a variety of sizes to match the motor being started.

C - Auxiliary Contact

Starters rated 10 HP and greater come standard with 1 normally open (NO) and one normally closed (NC) auxiliary contact.
Additional contacts can be added in the field or specified as follows:

Suffix Code	\# of Auxiliary Contacts
10	1 NO-0 NC
11	NO-1 NC
20	$2 \mathrm{NO}-0 \mathrm{NC}$
22	2 NO-2 NC

D - Overload Relay

The starters listed on the following pages include the base overload type designation (beginning with Z) and some of these have the overload fully identified.
For those starters where the \mathbf{Z} is followed by ..., you must select
the proper overload relay current range. In order to do this, find out the motor full load amp rating and select the overload range accordingly. See page $3 / 33$ for listings of overload relay code suffixes.
The overload relay is calibrated for long time tripping at 125% of the dial setting and therefore, for motors with a service factor of 1.15 or greater, use the motor nameplate full load current to select the dial setting. For motors with a service factor of less than 1.15, multiply the motor nameplate full load current by 0.9 and use the resulting value to set the overload relay dial.

E-Enclosure Suffix

/S $=$ General Purpose, Type 1
ISD $=$ Dust and Drip Resistant, Type 12
IDW = Outdoor use, Type 3R
$\|$ = Corrosion Resistant, Type 12, 13, Indoor 4X
no suffix = Open Type (no enclosure)

F - Coil Voltage

The standard contactor coil voltage is 120 V 60 Hz .
Most starters can be provided with a different coil voltage in the range from 12 V DC to 480 V AC. See Page $3 / 46$ and $3 / 47$ for a listing of the available coil voltages. Simply add the appropriate coil voltage to the end of the starter catalog number.

Selecting and Completing the Type Number

The following is an explanation of the HOW TO ORDER box.
Each box contains an ordering example. For this example (from page $3 / 12$), suppose a full-voltage, non-reversing, non-combination starter in a general purpose Type 1 enclosure and with a contactor coil voltage of 120 V 60 Hz .

How to Order

To Order Specify: Type Number Overload Relay Suffix (page 3/33) Enclosure Suffix Coil Voltage (page 3/46) Accessories	Type Number Example: DIL 0M/11/Z00-16/S 120 V 60 Hz			
	Type	Overload Relay Suffix	Enclosure Suffix	Coil Voltage
	DIL OM/11/Z00-	16	IS	120 V 00 Hz
	A	B	C	D

(A) Type

This is the basic starter type. It includes:
DIL = Non-reversing, across-the-line starter.
OM $\quad=\quad$ Contactor frame size ($10 \mathrm{HP} @ 460 \mathrm{VAC}, 3-\mathrm{ph}$). Accessories such as control
$/ 11=\quad$ Auxiliary contacts- 1 NO, 1 NC.
IZOO- = Type ZOO overload relay (motor current setting range suffix to be added).

(B) Overload Relay Suffix

Z00- = This part requires completion by adding a suffix code from page $3 / 33$.
Example: For the 10 HP motor at $460 \mathrm{~V} \mathrm{AC}, 3$-ph, the motor full load current is 14 (if possible, use actual nameplate rating). Following the guidelines found on the previous page, select an overload setting range within the ZOO- type from page $3 / 33$ that includes the 14 A motor FLC. The first choice would be the Z00-16 with an adjusted range of 10 to 16 A . The suffix number to be inserted into the starter catalog number is the maximum of the setting range, or in this case, 16.

(C) Enclosure Suffix

IS = General purpose indoor, Type 1
ISD = Dust and drip resistant, Type 12.
IDW = Weather resistant outdoor, Type 3R.
II = Corrosion resistant non-metallic indoor, Type 4X or 13.
For the starter in question, therefore, the correct enclosure suffix would be /S.
Other enclosure types are also available - contact Moeller Electric.

(D) Coil Voltage

From page 3/46, select the required coil voltage; in this case, $120 \mathrm{~V} \mathbf{6 0 ~ H z}$.

Starters, Non-Combination

 Full Voltage Non-Reversing

How to Order: see page $3 / 12 \& 3 / 13$ for detailed instructions and selection hints

To Order Specify:	Catalog Number				Additional Information	Page
Type Number					Technical Data	3/50
Overload Relay suffix	Type	Overload	Enclosure	Add coil voltage	Dimensions	3/61
Enclosure Suffix		Relay Suffix	Suffix	from page 3/46-47	Overload Relays	4/2
Coil Voltage	DIL 0M/11/ZO0-	10	/S	120 V 60 Hz	Accessories Factory Modifications	$3 / 35$ $3 / 28$

1				2		3	4		5		6		7				
$\begin{aligned} & \text { UL/CSA Maximum HP } \\ & \text { Rating } 50 / 60 \mathrm{~Hz} \end{aligned}$				Standard Auxiliary Contacts		Type Insert overload relay suffix code ．．．from page $3 / 33$ ． Note：Suffix has already been provided in certain types．	Enclosed				Open						
Consult Moeller Electric for export applications requiring kilowatt－rated starters complying with IEC standards 3 phase HP Ratings＠							General Purpose Enclosure Type 1 Add suffix／S to type		Industrial use Dusttight Enclosure Type 12，add suffix ISD to type For Weatherproof Type 3R，add suffix IDW to type		Insulating Material Enclosure Corrosion resistant Dustight Type 12， 13，Indoor 4X，add suffix II to type		Without Enclosure				
$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$				$\begin{aligned} & \text { Pric } \\ & \$ \end{aligned}$		$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$		$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$		$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$				
DIL．．．M Contactors				$\begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{array}$		DIUL EEM－01／ZE－．．． DIUL EM－01／ZE－．．． DIUL 00M－01／Z00－．．．／MV DIUL 00AM－01／Z00－．．．／MV	－										
$11 / 2$	2	3	3														
2	3	5	5														
3	3	5	5														
3	3	$71 / 2$	10														
5	$71 / 2$	10	15	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$		DIUL OM／11／Z00－．．．／MV DIUL 0AM／11／ZOO－24／MV DIUL OM／11／Z1－40／MV DIUL OAM／11／Z1－40／MV											
－		15	20														
$71 / 2$	－	－	－														
－	10	－	－														
10	－	20	25	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array}$		DIUL 1M／11／Z1－40／MV DIUL 1AM／11／Z1－40／MV DIUL 1AM／11／Z1－57／MV											
－	－	25	30														
－	15	－	－														
15	20	40	40	，	1	DIUL 2M／11／Z1－57／MV											
－	－	－	50	1	1	DIUL 2AM／11／Z1－57／MV											
20	－	－	－	1	1	DIUL 2AM／11／Z1－63／MV											
－	25	50	－	1	1	DIUL 2AM／11／Z1－75／MV											
25	30	60	75	1	1	DIUL 3M 80／11／Z5－100／XMV											
40	50	100	125	1	1	DIUL 4M 115／11／Z5－．．／XMV1）	$\stackrel{\text { 苟 }}{\square}$	苞		苞	苞	苞	苞	苞			
DIL Universal Contactors							L	른	－	$\stackrel{\circ}{2}$	－	:					
30	30	60	75	2	2	DIUL 3－22／Z4－100－V1）	\％	$\stackrel{\otimes}{\oplus}$	\％	$\stackrel{\otimes}{\infty}$	¢	$\stackrel{\otimes}{\oplus}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\oplus}{\oplus}$			
40	50	100	100	2	2	DIUL 4－22／Z4－．．．－V2）	＋		－		＋	＋	苟				
60	75	150	175	2	2	DIUL 6－22／Z4－．．．－V2）		$\stackrel{\text { ® }}{\lrcorner}$	$\stackrel{\square}{\square}$	$\stackrel{\text { ® }}{ }$	$\stackrel{\text { ® }}{ }$	$\stackrel{\text {－}}{ }$		$\stackrel{\square}{\square}$			
75	－	200	－	2	2	DIUL 8－22／Z4－240－V2）	－	－	－	$\stackrel{8}{8}$	－	\％	\％	8			
－	100	－	250	2	2	DIUL 8－22／ZW7－．．．－V2）					－	는		는			
125	150	300	350	2	2	DIUL 8A－22／ZW7－．．．－V2）				$\stackrel{\otimes}{\circ}$	©	$\stackrel{\otimes}{\infty}$					

1）These starters with suffix／I enclosures are available in Types 12 and 13 only．
2）These starters are not available with suffix II enclosures．
For larger size Starters，consult Moeller Electric．

How to Order：see page $3 / 12 \& 3 / 13$ for detailed instructions and selection hints

To Order Specify： Type Number	Type Number	Overload Relay Suffix		
Overload Relay suffix Enclosure Suffix	Type \square	24	Enclosure Suffix	Add coil voltage from page 3／46－47
Coil Voltage Accessories	DIUL OM／11／Z00－．．／MV		／SD	120 V 60 HZ

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 28$

Starters, Non-Combination
 Two Speed

1				2	3	4	5
UL/CSA ${ }^{1)}$ Maximum HP Rating $50 / 60 \mathrm{~Hz}$				2-Speed, 2-Winding (Separate Winding) Wye-Connected motors (YY) ${ }^{2)}$	Enclosed ${ }^{3}$	2-Speed, 1-Winding (Consequent pole) motors	Enclosed ${ }^{3}$)
3 phase				Type Insert overload relay suffix code ... from page $3 / 33$.	Includes two 3-phase bimetallic overload relays	Type Insert overload relay suffix code ... from page $3 / 33$.	Includes two 3-phase bimetallic overload relays
$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\underset{H P}{575 \mathrm{~V}}$		Price \$		Price \$

Constant or Variable Torque

DIL...M Contactors

3	3	5	5
$\overline{5}$	3	$71 / 2$	10
$71 / 2$	-	10	15
-	-	15	-
-	10	-	-
10	-	20	25
-	15	25	30
15	20	40	40
20	25	50	50

> 2S2W 00M/Z00-...IZ00-.../S
> 2S2W 00AM/ZOO-...IZOO-.../S
> 2S2W 0M/Z00-..IZ00-../S
> 2S2W 0M/Z1-...IZOO-.../S
> 2S2W 0AM/Z00-.../Z1-.../S
> 2S2W 0AM/Z1-...IZ1-.../S
> 2S2W 1M/Z1-...IZ1-...IS
> 2S2W 1AM/Z1-...IZ1-.../S
> 2S2W 2M/Z1-...IZ1-.../S
> 2S2W 2AM/Z1-...IZ1-.../S

DIL Universal Contactors				
30	-	-	-	2S2W 3-22/Z4-.../Z1-.../S
40	50	100	100	2S2W 4-22/Z4-...IZ1-.../S
60	75	150	150	2S2W 6-22/Z4-...IZ4-.../S
75	-	200	200	2S2W 8-22/Z4-.../Z4-.../S
-	100		250	2S2W 8-22/ZW7-...IZ4-../S
100	-	250	300	2S2W 8A-22/ZW7-...IZ4-.../S
125	150	300	350	2S2W 8A-22/ZW7-...IZW7-.../S

Constant Horsepower

DIL...M Contactors

2	2	3	3
$\overline{5}$	$\overline{5}$	5	$71 / 2$
-	$71 / 2$	10	10
$71 / 2$	-	15	20
-10	10	20	25
10	15	30	30
15	20	40	40

> 2S2W 00M/Z00-...IZ00-.../S
> 2S2W 00AMIZ00-...IZOO-...IS
> 2S2W 0M/Z00-...IZOO-...IS
> 2S2W 0AMIZ00-...IZOO-...IS
> 2S2W 1M/Z1-...IZ1-.../S
> 2S2W 1AM/Z1-...IZ1-.../S
> 2S2W 2M/Z1-..IZ1-../S
> 2S2W 2AM/Z1-...IZ1-...IS


```
2S1W 00M/Z00-...IZ00-.../S
2S1W 00AMIZ00-...IZ00-...IS
2S1W 0M/Z00-...IZOO-...IS
2S1W OAMIZ00-...IZ00-.../S
2S1W 1M/Z1-...IZ1-.../S
2S1W 1AM/Z1-../Z1-.../S
2S1W 2M/Z1-..IZ1-../S
2S1W 2AM/Z1-...IZ1-.../S
2S1W 3-22/Z1-...IZ1-../S
2S1W 4-22/Z4-...IZ1-../S
2S1W 6-22/Z4-...IZ1-../S
2S1W 8-22/Z4-...IZ1-../S
2S1W 8-22/Z4-...IZ4-../S
2S1W 8-22/ZW7-...IZ4-.../S
2S1W 8A-22/ZW7-...IZ4-.../S
```

[^0]
Complete Ordering Information:

State Type from column 2 or 4
Insert the Overload Relay Suffix codes from page 3/33 (corresponding to the Motor full load currents at each speed). Complete Type with Coil Voltage rating from 3/46-47.

Also provide the following useful motor data for faster order processing:

```
Line Voltage and Horsepower, Phase and Frequency.
Control Voltage and Frequency, if different from Line Voltage.
2-Speed, 2-Winding or 2-Speed, 1-Winding. Include Full Load Current at each speed.
Constant or Variable Torque, or Constant Horsepower.
Motor Connection Diagram for nonstandard separate winding motors.
```

For Factory Modification see page 3/28.

Type PKZ 2/ZM/S-SP Motor Starters: A Higher Level of Protection And Versatility

General:

The PKZ 2/ZM/S-SP is a self-protected starter, the FIRST motor controller to be UL listed and CSA certified under Type E, the category for selfprotected control devices. In other words, it is a combination motor controller featuring main disconnect, over-current, overload and motor switching functions in one compact unit.

In addition, the PKZ 2/ZM/S-SP incorporates the latest technological advances in current limitation to provide a high short circuit interrupting rating and continuity of service capability.

The PKZ 2/ZM/S-SP is a stand-alone device which does not require any backup protection up to its maximum interrupting rating! It is available in both Full Voltage Non-Reversing and Full Voltage Reversing versions.

Features

- UL listed, self-protected combination motor controller, UL 508/CSA 22.2 No. 14 category E.
- Fuseless, high fault interrupting current-limiting design, with separate main contacts for disconnect and contactor.
- Its modular construction integrates both thermal and magnetic trips.
- It controls and protects motors up to 30 HP at 460 V , 25 HP at 575 V .
- One basic device accommodates up to 11 different plug-in trip modules, simplifies engineering and reduces stocking costs.
- Suitable for PLC controlled, fully automated operation.
- Differentiated overload and short-circuit trip indication.
- A wide range of accessories.

Contents

Description	Page
Application Hints.	3/18
Features \& Benefits.	3/19
Full Voltage, Non-Reversing..... complete with trip module	3/20
Full Voltage, Non-Reversing and reversing without trip module	.3/21
Plug-in trip module..............	.3/21
Accessories..	...7/28
Technical Data...	...3/51

Starters - Combination Self-protected

All-In-One Starter Eliminates Upstream Circuit Breaker or Fuses

Application:

As per the intent of NEC Article 430, the self-protected control device will perform the functions of Motor Disconnecting Means (Part J), Motor BranchCircuit, Short-Circuit and Ground-Fault Protection (Part D), Motor Controller (Part G) and Motor Overload Protection (Part C). Up to the maximum rated short circuit current available, NO upstream circuit breaker or set of fuses is required.
The PKZ 2/ZM-.../S-SP has 2 sets of main contacts, both current-limiting in design. This provides it with a high interrupting rating and the capability to
protect itself against damage under fault conditions. No contact welding can ensue thus providing for continuity of service.
Each unit consists of a basic frame (disconnect switch and contactor) rated to switch a motor load of 30 HP @ 460 V AC. Eleven plug-in trip modules are available to cover motor loads ranging from fractional HP sizes through 30 HP @ 460 V AC. As a result, stocking of parts is minimized and use of the starter for other motor loads may be as simple as plugging-in a new trip module and setting the trip response dials.

Diagram 430-1 from NEC Article 430

Choose the PKZ 2/ZM-.../S-SP starter for maximum protection and flexibility.

- UL Listed for use on circuits capable of delivering 65,000 RMS Sym amps @480Y/277 V AC and 42,000 RMS Sym amps @ 600Y/347 V AC
- NO backup short circuit protection required (replaces the fuses or circuit breakers required by other conventional starters)
- Plug-in trip modules can be removed/installed without disturbing power wiring
- Field-adjustable, coordinated and sealable settings for motor overload and short circuit trip response
- Compact design allows installation in hard-to-fit areas
- Exceeds IEC "Type 2" coordination without the need for additional fuses or circuit breaker
- Removal of trip block (for maintenance or servicing) provides visible electrical isolation gap between line disconnecting and contactor portions
- All live parts (including terminals) are shrouded against accidental contact ("finger proof" per IEC 536), even with the plug-in trip module removed
- Maximum continuity of service (protects itself against damage from fault currents)

The PKZ 2/ZM-.../S-SP Self-Protected Starter comes standard as a one piece construction featuring a Main Disconnect and a Contactor. The unit can be either panel or rail mounted. Integral power takeoffs are provided between the Disconnect and Contactor for control circuit feed. Adjustable Motor protective thermalmagnetic Trip modules are set in accordance with the Motor Full Load Current and plugged directly into the base of the Disconnect. Trip modules and accessories can all be field installed for maximum versatility.
The Main Disconnect and Contactor modules can also be separately mounted. This is particularly suitable for Full Voltage Reversing applications which combine the PKZ 2-SP disconnect with two mechanically interlocked S-PKZ 2 contactors (see page 3/21).

(1) Both field wiring terminals on the line side (Disconnect) and load side (Contactor) have large Service Entrance spacings typical of molded case circuit breakers.
(2) The Main Disconnect isolating contacts are current limiting in design.
(3) Visible, "finger-touch-proof" open circuit power path when Trip Module is removed.
(4) The Contactor Motor Switching contacts are also current limiting in design and significantly enhance the device's overall interrupting ability.
(5) The Contactor comes standard with 1 NO and 1 NC auxiliary contacts. 2 NO also available.
(6) The Trip Module can be set and then sealed with a wire lock.
(7) Padlockable Handle with ON, OFF and TRIP (+) indication.
(8) Field-interchangeable plug-in Motor Protective Trip Modules with Coordinated Overload and Short-Circuit protection built-in.
(9) Adjustable magnetic trip dial, range: 8.5-14 times Trip Module rating.
(10) Adjustable thermal trip dial, range: 0.6-1 times Trip Module rating (set to Motor FLC).
(11) Test-to-trip slot.
(12) Coding feature to differentiate Trip Modules.
(13) Short-circuit trip indicator K-AGM-PKZ 2 provides visual indication of short circuit trip condition and differentiation between short circuit and general trip due to overload and/or voltage trips.

ZMR-...-PKZ 2

Trip Module Type ZMR
Under overload and short circuit fault conditions the standard trip module will open the Main Disconnect portion of the PKZ 2 Self-Protected starter, much like the operation of an inverse time molded case circuit breaker. As an option, the trip module Type ZMR can be provided. It features a set of auxiliary contacts which are actuated under overload conditions. Similar to the operation of an overload relay in a conventional combination controller, the N.C. contact can be used to de-energize the contactor coil circuit in the event of an overload and the N.O. contact can be used to annunciate the condition. A short circuit fault will trip open the Main disconnect instantaneously just like the standard trip module.
The ZMR module is ideal for applications which need to take full advantage of the Self-Protected Starter's capabilities over conventional combination controllers, but wish to retain the operating features of a conventional overload relay in a starter. See page 7/26 for further info.

Starters - Combination
 Self-protected, Full Voltage Non-Reversing

Standard Features

- UL listed/CSA certified, self-protected combination motor controller, UL 508/CSA 22.2 No. 14 Type E.
- Main Disconnect and Contactor modules rated max 42 A, 30 HP @ 460 V AC; max. 27 A, 25 HP @ 575 V AC.
- Stand-alone device, no back-up overcurrent protection required up to its full interrupting rating, 100/65/42 kA @ 240/480/600 V AC.
- Continuity of service (protects itself against damage under fault conditions).
- For additional safety, plug-in trip module, which creates an open circuit path to the motor when removed.
- Adjustable thermal and magnetic trips; built-in phase loss differential trip.
- Built-in 1 NO \& 1 NC auxiliary contacts in the contactor portion. 2 N.O. also available.
- Electrical life: 1 million operations, AC-3 (30 HP at 460 VAC)
- Adapter plate for rail or panel mounting.
- Tap-off terminals on load side of disconnect for easy control circuit feed.
- Full range of accessories including voltage trips, standard and differentiated trip indicating auxiliary contacts, remote control drive.
- Environmentally safe! No cadmium, asbestos, mercury, PCB's. No Fluorocarbons produced during manufacture.
- Enclosed starters provided with door interlocking and padlockable handle.

1) Set bimetal trips (yellow dial) to motor FLC

- Tripping current $=125 \%$ of setting
- For motors of Service Factor 1.0, set dial to 0.9 of Motor FLC setting
- Ambient compensated
- Phase failure sensitive

2) For type $4 X$, consult Moeller Electric.

A $30 \mathrm{HP}, 460 \mathrm{~V}$ self protected combination motor controller: PKZ 2-SP installed in a NEMA 1 enclosure with fused control transformer, extra auxiliary contact and pilot devices

Select the appropriate FVNR／FVR open style basic starters and trip modules from the tables below

PKZ 2／S－SP．．．
Non－Reversing starter

PKZ 2／S－SP－FVR．．． Reversing starter

Trip module ZM－．．．－PKZ 21） plugs into the PKZ 2 Disconnect to complete starter．See page $7 / 26$ for more info on ZM－．．．PKZ 2 trip modules．

Trip module ZMR－．．．－PKZ 21） plugs into the PKZ 2 Discon－ nect to complete starter． Includes 1N．O ． 1 N．C overload relay trip \＆signalling contacts．See page 7／26 for more info on ZMR－．．．－PKZ 2 trip modules．

FVNR－Self－Protected．Full Voltage Non－Reversing basic starter（without trip module）

Maximum HP rating 3 phase				Type	$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$	
200 V	230 V	460 V	575 V	PKZ 2／S－SP．．．	－	－
10	15	30	25	Specify coil voltage Standard：（AC）24，120，208，240，480，600V，60Hz （DC） 24 V	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\square}$

The PKZ 2／S－SP（．．．）Self－Protected Full Voltage Non－Reversing starter is the same device as featured on page $3 / 20$ but without the trip module ZM－．．．－PKZ 2．It is fully ready to be mounted and wired in its own enclosure，MCC unit or panel assembly．The HP values shown above are the maximum allowable and are dependent on the trip module chosen．The ZM－．．．－PKZ 2 trip modules which are shown below can be later selected in accordance with desired motor HP and FLC and plugged into the disconnect to complete the starter．Trip modules can be field installed for maximum flexibility．

FVR－Self－Protected．Full Voltage Reversing basic starter（without trip module）

Maximum HP rating 3 phase				Type	Price	
200 V	230 V	460 V	575 V	PKZ 2／S－SP－FVR．．．	－	』
10	15	30	25	Specify coil voltage Standard：（AC） $24,120,208,240,480,600 \mathrm{~V}, \mathbf{6 0 H z}$ （DC） 24 V	\％	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\lrcorner}$

The PKZ 2／S－SP（．．．）Self－Protected Full Voltage Reversing starter is supplied with factory mounted and wired disconnect and mechanically interlocked contactors．Its features and ratings are otherwise identical to the FVNR starter．It is fully ready to be mounted and wired in its own enclosure，MCC unit or panel assembly．The HP values shown above are the maximum allowable and are dependent on the trip module chosen．The ZM－．．．－PKZ 2 trip modules which are shown below can be later selected in accordance with desired motor HP and FLC and plugged into the disconnect to complete the starter． Trip modules can be field installed for maximum flexibility．

Trip Modules－ZM－．．．－PKZ 2

Maximum HP rating 3 phase				Adjustable thermal current range ${ }^{1)}$ Amps	Adjustable instanta－ neous trip range Amps	Type	Pri		Type Includes 1N．O．\＆ 1 N．C overload relay trip \＆signalling contacts	Pri	
In this range，select devices in accordance with motor FLC				0．4－0．6	5－8	ZM－0．6－PKZ 2	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	ZMR－0．6－PKZ 2	$\stackrel{\text { 号 }}{\square}$	$\stackrel{\text { ¢ }}{\square}$
		$1 / 2$	1／2	0．6－1．0	8－14	ZM－1－PKZ 2	－		ZMR－1－PKZ 2		
	$1 / 3$	$3 / 4$	1	1．0－1．6	14－22	ZM－1．6－PKZ 2	－	a	ZMR－1．6－PKZ 2	－	0
$1 / 2$		1	$11 / 2$	1．6－2．4	20－35	ZM－2．4－PKZ 2	－	$\stackrel{\ominus}{\stackrel{\circ}{\circ}}$	ZMR－2．4－PKZ 2	$\stackrel{\otimes}{0}$	$\underset{\sim}{\otimes}$
1	1	2	3	2．4－4．0	35－55	ZM－4－PKZ 2			ZMR－4－PKZ 2		m
$11 / 2$	$11 / 2$	3	5	4．0－6．0	50－80	ZM－6－PKZ 2			ZMR－6－PKZ 2		
2	3	5	$71 / 2$	6－10	80－140	ZM－10－PKZ 2	$\stackrel{\square}{\square}$	$\stackrel{\text { ® }}{ }$	ZMR－10－PKZ 2	ω	$\stackrel{\square}{\square}$
3	5	10	10	10－16	130－220	ZM－16－PKZ 2	$\stackrel{1}{3}$	$\stackrel{\circ}{\circ}$	ZMR－16－PKZ 2	－	－
$71 / 2$	$71 / 2$	20	25	16－27	200－350	ZM－25－PKZ 2	－	\bigcirc	ZMR－25－PKZ 2	－	는
10	10	20	－	24－32	275－425	ZM－32－PKZ 2	－		ZMR－32－PKZ 2		口
10	15	30	－	32－42	350－500	ZM－40－PKZ 2	¢	$\stackrel{』}{\infty}$	ZMR－40－PKZ 2	©	

1）ZM－．．．－PKZ 2 \＆ZMR－．．．－PKZ 2 Trip Modules：
－－Thermal trips（yellow dial）set to motor Full Load Current
－Tripping current $=125 \%$ of setting
－For motors of Service Factor 1．0，set dial to 0.9 of Motor FLC setting
－Ambient compensated
－phase failure sensitive

UL listed／CSA certified maximum interrupting ratings	
240 V AC	100 kA RMS sym
480 YY 277 VAC	65 kA RMS sym
600 Y／347 VAC	42 kA RMS sym
Up to $27 \mathrm{~A}:$	Suitable for maximum 600 VAC power distribution system when the voltage between any phase to ground does not exceed 347 V
Up to $42 \mathrm{~A}:$	Suitable for maximum 480 V AC power distribution systems when the voltage between any phase to ground does not exceed 277 V

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$7 / 38$
Overload Relays	$4 / 2$
Accessories	$7 / 28$
Factory Modifications	$3 / 28$

Starters－Combination
Breaker Type，Full Voltage，Non Reversing

	1				2		3	4		5		6		7	
	UL／CS Rating	Maximu $0 / 60 \mathrm{~Hz}$			Stan		Type ${ }^{1)}$		closed						
							Insert overload relay suffix		neral		ather－		sttight		ulatin
	3 phas						code ．．．from page $3 / 33$ （Suffix has already been		pose losure		of closure		closure ustrial		terial closure
									e 1		e 3R		e 12		e 12
									suffix to type		d suffix N to type		d suffix to type		d suffix type
	$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	NO										
$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & 0 \\ & ⿻ 上 丨 \end{aligned}$	DIL．．．M	System	ontacto												
$\stackrel{\rightharpoonup}{\mathbf{N}}$	3	3	5	－		0	M 00M－10／ZM／ZO0－．．．	\％	8	\％	\％	\％	\％	\％	8
	－	－	$71 / 2$	－	1	0	M 00AM－10／ZM／Z00－．．．	0	$\stackrel{i}{2}$	立		－	这	\％	
	5	71／2	10	15	1	1	M 0M／11／ZM／ZOO－．．．	の	$\%$			¢	0		
	$71 / 2$	10^{2}	15	20	1	1	M 0AM／11／ZM6／Z．．－．．．	¢				苞		$\stackrel{\square}{\square}$	
，	10	－	20	25	1	1	M 1M／11／ZM6／Z1－40	$\stackrel{\text { © }}{0}$	这	은		O	은	©	
	－	15	30	30	1	1	M 2M／11／ZM6／Z1－．．．	¢	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			$\stackrel{\otimes}{\oplus}$	$\stackrel{\oplus}{\oplus}$	$\stackrel{\otimes}{\oplus}$	$\stackrel{\oplus}{\oplus}$
	15	20	40	40	1	1	M 2M／11／ZM6／Z1－57		W		芴	芴	葻	＋	\＃
	20	25	50	50	1	1	M 2AM／11／ZM6／Z1－．．．	－		J		$\stackrel{\infty}{\leftrightharpoons}$	$\stackrel{\text { II }}{\substack{1}}$	－	$\stackrel{\text { OI }}{\square}$
	25	30	60	75	1	1	M 3M 80／11／7M6／Z5－	0	交	－		え	言		는
	25	30	60			1	M 3M 80／1／ZMM6／25－．．．	©	$\stackrel{8}{\infty}$			$\stackrel{\otimes}{\oplus}$	$\stackrel{\otimes}{\oplus}$		$\stackrel{\oplus}{\oplus}$
	30	40	75	100	1	1	M 4M 115／11／ZM6／Z5－．．．	－	\＃		苟		苟	苟	
	40	50	100	125	1	1	M 4M 115／11／ZM9／Z5－．．．	$\stackrel{\square}{-}$	－				$\stackrel{\square}{-}$		$\stackrel{\square}{\square}$
	DIL Un	versal C	ntactors					－	는	\bigcirc		－	言		京
	30	30	60	75	2	2	M 3－22／ZM6／Z4－．．．					\&	$\stackrel{\otimes}{\infty}$		
	－	40	75	100	2	2	M 4－22／ZM6／Z4－．．．								
	40	50	100	－	2	2	M 4－22／ZM9／Z4－140	－	\cdots				$\stackrel{\text { N }}{\sim}$		$\stackrel{\text { N }}{\sim}$
								．	$\stackrel{8}{2}$	－	－	©	O.	®	
	60	75	150	150	2	2	M 6－22／ZM9／Z4－．．．	2	2		－	흔	－		－
									$\stackrel{\otimes}{\infty}$		$\stackrel{\otimes}{\circ}$	\％	\％		\％
	－	－	－	200	2	2	M 8－22／ZM9／Z4－．．．						＋		
	75	－	200	－	2	2	M 8－22／ZM10／Z4－240	$\stackrel{\text { ，}}{ }$	－				$\stackrel{\text { ® }}{ }$		
	－	100	－	250	2	2	M 8－22／ZM10／ZW7－．．．	\％	\bigcirc	\％		－	－	¢	
													2		
	125	150	300	300	2	2	M 8A－22／ZM10／ZW7－．．．	\％	$\stackrel{\otimes}{\infty}$	¢			$\begin{aligned} & \mathbb{\otimes} \\ & \stackrel{\sim}{2} \end{aligned}$	\％	

1）UL listed short circuit withstand for DIL．．．M．．．（．．．）M／starters（using DIL．．．M System contactors through 50 HP at 460 V ）is 25 kA RMS sym．at 480 V AC．

How to Order

To Order Specify：	Type Number（for 10 HP＠ 460 V AC）			
Type Number		Overload	Enclosure	Add Coil Voltage
Overload Relay suffix	Type	Relay Suffix	Suffix	from p．3／46－47
Enclosure Suffix Coil Voltage	M 0M／11／ZM／Z00－	16	／S	120 V 60 Hz
Accessories	M OM／11／ZM／ZOO－	16	IS	120 V 00 Hz

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 28$

1) UL listed short circuit withstand for MW...M/ starters (using DIL...M System contactors through 50 HP at 460 V) is 25 kA RMS sym. at 480 VAC .
2) Contactors equipped with 1 NC auxiliary contact only for electrical interlocking purposes. For additional auxiliary contacts see page $3 / 35$.

How to Order

To Order Specify:	Type Number (for 30 HP @ 460 V AC)			
Type Number		Overload Relay Suffix	Enclosure Suffix	Add Coil Voltage from p. 3/46-47
Overload Relay suffix Enclosure Suffix	Type	Relay Suffix	Suffix	from p. 3/46-47
Coil Voltage Accessories	MW 2M/11/ZM6/Z1-...	57	/S	120 V 60 Hz

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 28$

Starters－Combination
Fusible \＆Non－Fusible，Full Voltage，Non Reversing，Class J

	1				2	3	4		5	6		7		8		，	
	UL／C Ratin	A Max 50／60	$\operatorname{mum~}_{\mathrm{H}} \mathrm{H}$		Discon－ nect	$\begin{aligned} & \text { Class J } \\ & \text { Time } \end{aligned}$	Stan Auxil		Type ${ }^{2}$		closed						
					switch	Delay			Insert overload relay suffix		neral		ather－		sttight		ulating
	3 pha				Size	Fuse Clips			code ．．．from page 3／33		urpose closure		of en－ sure		closure ustrial		terial closure
						Siz			For optimal motor protection， obtain actual motor nameplate		pe 1		ee 3R		pe 12		pe 12
									overload per instructions found on pages $3 / 12-3 / 13$ ．Consult		dd suffix to type		d suffix N to type		d suffix to type		suffix type
	$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	Amps	Amps		NC	falls outside the overload frame size suggested．	Pri $\$$		$\begin{aligned} & \text { Pri } \\ & \$ \end{aligned}$				\＄	
o	3	3	5	$71 / 2$	30	30		0	M 00M／10／P2－30FC23／Z00－．．．					苞		ぁ	$\underline{\square}$
त	－	－	71／2	10	30	30		0	M 00AM／10／P2－30FC23／Z00－．．．	¢		$\stackrel{\square}{*}$	¢	®			
$\stackrel{\rightharpoonup}{\mathbb{D}} \stackrel{\rightharpoonup}{0}$	5	5	10	15	30	30		1	M OM11／P2－30FC23／Z00	0		0	a	0		a	L
	$71 / 2$	$71 / 2$	－	－	30	60	1	1	M OM／11／P2－30FC26／ZO0－．	\％		¢		¢		๗	¢
	－	10	15	20	30	60	1	1	M 0AM／11／P2－30FC26／Z00－．．．	它	＊	芴	\＃	\＃	む		あ
	－	－	20	25	30	60		1	M 1M／11／P2－30FC26／Z1－．．．					コ			
	10	－	－	－	60	60	1	1	M 1M／11／P2－60FC26／Z1－．．．	0		这	는	0	등	2	$\stackrel{\text { c }}{ }$
	－	－	30	30	60	60	1	1	M 2M／11／P2－60FC26／Z1－40	¢		¢	๗			\％	\％
	－	15	－	40	60	60	1	1	M 2M／11／P2－60FC26／Z1－57								
	15	20	40	－	60	100		1	M 2M／11／P2－60FC110／Z1－．．．	－		告	年				$\stackrel{\square}{\square}$
	20	25	50	50	100	100	1	1	M 2AM／11／P2－100FC110／Z1－．．．	\％	－	－	－	®	8		，
										0	2	－	는	¢	号	－	를
	30	30	60	75	100	200	2	2	M 3－22／P2－100－62003J／Z4－．．．	$\stackrel{\otimes}{\infty}$	$\stackrel{\otimes}{\otimes}$	$\stackrel{\oplus}{\oplus}$	$\stackrel{\oplus}{\oplus}$	$\ddot{\otimes}$		\％	－
	Com Non	usib	$\begin{aligned} & \text { on St } \\ & \text { e Dis } \end{aligned}$	arters conne	Swit	h Type				$\stackrel{\text { N }}{\sim}$		苟	$\stackrel{\stackrel{\rightharpoonup}{J}}{\stackrel{\rightharpoonup}{\partial}}$	$\stackrel{\stackrel{\rightharpoonup}{J}}{\underset{\sim}{0}}$			
	3	3	5	7	30	None	1	1	M 00M／11／P2－30／Z00－．．．	은		O	－				를
	－	－	$71 / 2$	10	30	None	1	1	M 00AM／11／P2－30／Z00－．．．	。	\％	©	\％			＊	0
	$71 / 2$	$71 / 2$	10	15	30	None	1	1	M OM／11／P2－30／Z00－．．．	¢		¢	¢			©	¢
	－	10	15	20	30	None	1	1	M 0AM／11／P2－30／Z00－．．．	\％		芴	\％	$\stackrel{\square}{\square}$		\％	
	10	－	20	25	60	None	1	1	M 1M／11／P2－60／Z1－．．．	J	－	Ј	－				号
	15	20	40	40	60	None	1	1	M 2M／11／P2－60／Z1－．．．	．		$\stackrel{\text { © }}{\sim}$	©	$\stackrel{\text { ® }}{ }$			\％
	20	25	50	50	100	None	1	1	M 2AM／11／P2－100／Z1－．．．		능	－	능	\％	등		\bigcirc
	30	30	60	75	100	None	2	2	M 3－22／P2－100／Z 4－．．．		$\stackrel{\otimes}{\otimes}$	©	$\stackrel{\otimes}{\oplus}$				థ

1）Recommended Class J Time－Delay Fuse Ampacity． Range： 1.25 to 1.5 times motor full load current
2）UL listed short circuit withstand of fusible starters with class J fuses is 100 kA RMS sym．at 480 VAC ．

How to Order

To Order Specify： Type Number Overload Relay suffix Enclosure Suffix Coil Voltage Accessories	Type Number			
		Overload Relay Suffix	Enclosure	Add Coil Voltage from p．3／46－47
	Type	Relay Suffix	Suffix	from p．3／46－47
	M 0M／11／P2－30FC26／Z00－	16	IS	120 V 60 Hz

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 28$

Starters - Combination Fusible, Full Voltage, Non Reversing, Class R

Contact Moeller Electric for larger sizes.

1) Recommended Class R Rejection-Time-Delay Fuse Ampacity Range: 1.25 to 1.5 times motor full load current

Starters－Combination
Fusible \＆Non－Fusible，Full Voltage，Reversing，Class J

	1				2	3	4			5	6		7		8		9	
	UL／C Ratin	A Max 50／60	$\operatorname{mum}_{H 7} H$		Discon－ nect	Class J Time	Stan	dard		Type ${ }^{2}$		closed						
					switch	Delay				Insert overload relay suffix		neral		ather－		sttight		ulating
	3 pha				Size	Fuse Clips				code ．．．from page 3／33		urpose nclosure		of en－ sure		closure dustrial		terial closure
						Size ${ }^{1)}$				For optimal motor protection， obtain actual motor nameplate		pe 1		3R		pe 12		e 12
										overload per instructions found on pages $3 / 12-3 / 13$ ．Consult Moeller Electric if motor FLA		dd suffix to type		d suffix N to type		d suffix to type		d suffix type
	$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	Amps	Amps	NO			falls outside the overload frame size suggested．	Pri \＄				$\begin{aligned} & \text { Pria } \\ & \$ \end{aligned}$		\＄	
	3	3	5	71／2	30	30	0	1		MW 00M－01／P2－30FC23／Z00－．．．3）	－		苟	$\stackrel{\square}{\square}$	$\stackrel{\rightharpoonup}{1}$	$\underline{\square}$	H	$\underline{\square}$
М 》	－	－	71／2	10	30	30	0	1		MW 00AM－01／P2－30FC23／Z00－．．．3）	－	0		\％		。		8
心											\ldots	－	－	2	－			－
	－	5	10	15	30	30	1	1		MW 0M／11／P2－30FC23／Z00－．．．	\％	\otimes	\％	\％	\％	\％		\％
	$71 / 2$	$71 / 2$	－	－	30	60	1	1		MW 0M／11／P2－30FC26／Z00－．．．	の		ω	ω	¢	ω	ω	0
	－	－	15	20	30	60	1	1		MW 0AM／11／P2－30FC23／Z00－．．．	\pm		\＃	＊	苟	む	＋	＊
	－	10	－	－	30	60	1	1		MW 0AM／11／P2－30FC26／Z00－．．．	－		$\stackrel{\square}{\square}$	－	$\stackrel{\square}{\square}$	$\underline{-}$		－
	－	－	20	25	30	60	1	1		MW 1M／11／P2－30FC26／Z1－．．．	\％	－	8	\％	\％	8		－
	10	－	－	－	60	60	1	1		MW 1M／11／P2－60FC26／Z1－．．．	20	\％	는	\％	느느․	2		0
	－	－	30	30	60	60	1	1		MW 2M／11／P2－60FC26／Z1－40	\％	$\stackrel{8}{\circ}$	©	$\stackrel{\otimes}{\infty}$	¢	¢	©	$\begin{aligned} & \otimes \% \\ & \dot{\sim} \end{aligned}$
	－	15	－	40	60	60	1	1		MW 2M／11／P2－60FC26／Z1－57								
	15	20	40	－	60	100	1	1		MW 2M／11／P2－60FC110／Z1－．．．	苞	\＃	\＃	$\underline{\square}$	＂̈r	\＃	\％	$\stackrel{\sim}{*}$
	20	25	50	50	100	100	1	1		MW 2AM／11／P2－100FC110／Z1－．．．	$\stackrel{\square}{8}$		בِ	تِ	تِهِ.		，	$\bar{\circ}$
	30	30	60	75	100	200	2	2		MW 3－22／P2－100－62003J／Z 4－．．．	L	\％	\％	\％	\bigcirc	\％		\％
											¢	$\stackrel{\otimes}{\oplus}$	\&	$\stackrel{\otimes}{\infty}$	』	$\stackrel{\oplus}{\infty}$	®	$\begin{aligned} & 8 \\ & \text { í } \end{aligned}$
	Com	inat	on St	arters														
	Non	usib	e Dis	conne	Switc	h Type					苞	$\stackrel{\text { 岗 }}{\sim}$	$\stackrel{\text { N }}{ \pm}$	$\stackrel{\text { 号 }}{\square}$	苟		＊	\＃
	3	3	5	$71 / 2$	30	None	1	1		MW 00M／11／P2－30／Z00－．．．	$\stackrel{\text { \％}}{\sim}$	－	－	$\stackrel{\%}{\circ}$	$\stackrel{\circ}{0}$	8	\％	\％
	－	－	$71 / 2$	10	30	None	1	1		MW 00AM／11／P2－30／Z00－．．．	－	－	－	－	这		2	\％
	$71 / 2$	$71 / 2$	10	15	30	None	1	1		MW 0M／11／P2－30／Z00－．．．	\％	\％	\％	$\stackrel{\otimes}{0}$	©	\％	\＆	8
	－	10	15	20	30	None		1		MW 0AM／11／P2－30／Z00－．．．	か	の	の			ω	o	क
	10	－	20	25	60	None	1	1		MW 1M／11／P2－60／Z1－．．．	＋		t	＋	－		\％	＊
													－	－		－		－
	15	20	40	40	60	None	1	1		MW 2M／11／P2－60／Z1－．．．	\％		\％	\％	$\stackrel{\circ}{\square}$		$\stackrel{\text { ® }}{ }$	8
	20	25	50	50	100	None	1	1		MW 2AM／11／P2－100／Z1－．．．				－			는	
	30	30	60	75	100	None	2	2		MW 3－22／P2－100／Z4－．．．		$\stackrel{\otimes}{\stackrel{\circ}{\circ}}$	$\stackrel{\otimes}{\otimes}$	$\stackrel{\otimes}{\circ}$	\％	$\stackrel{\otimes}{\infty}$	©	$\stackrel{\otimes}{\infty}$

Contact Moeller Electric for larger sizes．

[^1]
How to Order

To Order Specify：	Type Number			
Type Number Overload Relay suffix	Type	Overload Enclosure Suffix Coil Voltage	Relay Suffix	Enclosure Accessories

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 28$

Starters - Combination Fusible, Full Voltage, Reversing, Class R

Contact Moeller Electric for larger sizes.

1) Recommended Class R Rejection-Time-Delay Fuse Ampacity. Range: 1.25 to 1.5 times motor full load current
2) Contactors equipped with 1 NC auxiliary contact only for electrical interlocking purposes. For additional auxiliary contacts see page 3/35

How to Order

To Order Specify: Type Number Overload Relay suffix Enclosure Suffix Coil Voltage Accessories	Type Number			
		Overload Relay Suffix	Enclosure Suffix	Add Coil Voltage from p. 3/46-47
	Type	Relay Suffix	Suffix	from p. 3/46-47
	MW 0M/11/P2-30FC43/Z00-	16	/S	120 V 60 Hz

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 28$

Starters－Full Voltage Factory Modifications

Ordering Information：

Order by description

The standard modifications shown on this page are those available for factory installation．Prices for these modifications are shown in the alphanumeric price book under＂Starters－Full Voltage Factory Modifications＂．The enclosure may or may not change with the addition of any of these items．When accurate dimensions of the enclosure are required，refer to your nearest Moeller Electric distributor or sales office．

Description Pilot Devices in Cover	Enclosure Type	Price addition all sizes \＄	Description	Price addition all sizes \＄
Push Buttons ＂START－STOP＂or＂ON－OFF＂ Double push button	$\begin{aligned} & 1,12,12 K, 3 R \\ & 13,3,4,4 X \end{aligned}$		Control Circuit Separate control circuit Fused control circuit－ 250 V ， 1 or 2 fuses Fused control circuit－ 600 V ， 2 fuses	
＂START－STOP＂or＂ON－OFF＂ Double push button with indicating light	$\begin{aligned} & 1,12,12 K, 3 R \\ & 13,3,4,4 X \end{aligned}$	$\begin{array}{lll} \dot{0} & \dot{\otimes} \\ \infty & \dot{~} \end{array}$	Auxiliary Relays Control relay，maximum of 4 poles－unwired －wired	$\begin{array}{lll} \stackrel{\otimes}{\circ} & \stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ} \end{array}$
Standard 1 unit push button Standard 2 unit push button Standard 3 unit push button	1，12，12K，3R 1，12，12K，3R 1，12，12K，3R		Timing relay Terminal Block wired－per pole Auxiliary Relays for Multi－speed Starter Only Compelling relay	$\begin{array}{cc} \frac{\pi}{3} & \frac{\pi}{3} \\ \stackrel{0}{2} & \stackrel{0}{2} \\ \frac{0}{2} & \end{array}$
Selector Switches ＂HAND－O－AUTO＂Selector Switch ＂MAN－AUTO＂Selector Switch	$\begin{aligned} & \text { 1, 12, 12K, 3R, 4X } \\ & \text { 1, 12, 12K, 3R, 4X } \end{aligned}$		Accelerating relay－ 2 speed Time decelerating relay -2 speed Phase reversal and failure relay	$\begin{array}{cc} \dot{\otimes} & \dot{\infty} \\ \infty \end{array}$
Pilot Lights Pilot light（specify color）	$\begin{aligned} & 1,12,12 K, 3 R \\ & 13,3,4,4 X \end{aligned}$	$\begin{array}{ll} \stackrel{\pi}{J} & \stackrel{.}{3} \\ \stackrel{0}{3} & \stackrel{U}{2} \end{array}$	Overload Relays Ambient compensated，phase failure sensitive 3 Phase bimetallic O／L relay Type Z．．．supplied as standard P．T．C．Thermistor Tripping Unit	
Push－to－test light or illuminated push button	$\begin{aligned} & 1,12,12 K, 3 R \\ & 13,3,4,4 X \end{aligned}$	$\begin{array}{cc} 0 & 0 \\ \dot{0} & \dot{0} \\ \infty & \infty \end{array}$	Name Plates Special nameplates，3＂x 1 ＂	$\begin{array}{ll} \text { a } & \text { à } \\ \dot{0} & \dot{0} \\ \stackrel{\circ}{\circ} \end{array}$

Price addition to Starter－Select using contactor frame size																
Description	$\begin{aligned} & \text { (E)EM } \\ & \text { OOM } \\ & 00 \mathrm{AM} \\ & 0 \mathrm{M} \\ & \$ \end{aligned}$		$\begin{aligned} & \text { 0AM } \\ & \text { 1M } \\ & \text { 1AM } \\ & \$ \end{aligned}$		2M 2AM \＄		$\begin{aligned} & 3-22 \\ & 4-22 \end{aligned}$ \＄		3M 80		$\begin{aligned} & 4 \mathrm{M} 115 \\ & 6-22 \end{aligned}$		$\begin{aligned} & 8-22 \\ & 8 \mathrm{a}-22 \end{aligned}$		PKZ 2 Self－ Protected Starter \＄	
Control Circuit Transformers Transformer 60 Hz with fused primary		$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\square}$		$\stackrel{\Delta}{\Delta}$	$\stackrel{\Delta}{\Delta}$	$\stackrel{\square}{\square}$	$\stackrel{\rightharpoonup}{\leftrightharpoons}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\Delta}$	$\stackrel{\rightharpoonup}{\leftrightharpoons}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\leftrightharpoons}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\stackrel{\rightharpoonup}{\leftrightharpoons}}{\leftrightharpoons}$	$\stackrel{\rightharpoonup}{\leftrightharpoons}$
Transformer with additional capacity up to $100 \mathrm{~V}, 60 \mathrm{~Hz}$ with fused primary	$\stackrel{\text { ® }}{i}$	－	: 仓	$\begin{aligned} & \text { ® } \\ & \stackrel{0}{2} \end{aligned}$	$$	$\stackrel{0}{⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 ⿱ 一 ⿱ ㇒ ⿴ 囗 ⿱ 一 一 心 . ~}$	－	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \hline 0 \end{aligned}$	$\stackrel{0}{3}$		－	ジ	－	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \hline 0 \end{aligned}$	－	$\begin{aligned} & \text { © } \\ & \stackrel{\text { U }}{0} \end{aligned}$
Overload Relay Omit overload relay－deduct	$\stackrel{\otimes}{\infty}$	$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\otimes}{\oplus}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{2}}$	$\stackrel{\otimes}{\infty}$	$\stackrel{8}{\circ}$	$\stackrel{\otimes}{\oplus}$	$\stackrel{\otimes}{\otimes}$	$\stackrel{\otimes}{\circ}$	©	¢	$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\otimes}{\otimes}$
Mechanical Interlock for Contactors		$\stackrel{\text { ® }}{\sim}$		$\stackrel{\stackrel{n}{\leftrightharpoons}}{\square}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\Delta}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\text { 号 }}{\square}$		$\stackrel{\text { ® }}{\square}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\pi}{\leftrightharpoons}$
Disconnect Device（for Multi－speed Starters only）	¢	－	－	－	¢	©	¢	\bigcirc	－	0	－	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	©	－	©
$\begin{array}{ll}\text { Disconnect switch } & \text {－non－fusible } \\ \text {－fusible }\end{array}$																
Circuit Breaker		¢		$\stackrel{\otimes}{\oplus}$	$\stackrel{\otimes}{\stackrel{\circ}{\circ}}$	$\stackrel{\oplus}{\oplus}$		$\stackrel{\otimes}{\circ}$	$\stackrel{\otimes}{\stackrel{\circ}{\circ}}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\oplus}{\stackrel{\circ}{\circ}}$	$\stackrel{\oplus}{\stackrel{\circ}{\circ}}$	$\stackrel{\otimes}{\circ}$

Starters - Reduced Voltage General

Application

Reduced voltage starting is required when there are limitations on inrush current or when the load cannot stand the mechanical shock of starting. Starting current and starting torque can be reduced by reducing the applied voltage to the motor stator terminals. A change in voltage applied to the stator results in a change of flux proportional to primary voltage. Stator and rotor currents vary in proportion to applied stator voltage. Since motor torque is proportional to the product of flux and rotor current, torque is proportional to the square of the voltage applied to the stator. The commonly used types of reduced voltage or current motor starters are Autotransformer, Star-Delta, Part Winding, Primary Resistor and Reactor.

Comparison Chart for Reduced Voltage Starters

	Autotransformer Starter Type AT (page 3/30)	Star-Delta Starter Type SD (page 3/31)	Part Winding Starter Type PW ${ }^{1)}$	Primary Resistor Starter Type PR ${ }^{1)}$	Reactor Starter Type R ${ }^{1)}$
Motor Requirements	Can be used with any standard squirrel cage motor.	Requires a special motor with 6 leads brought out (Delta wound stator).	Requires a special motor in which the stator windings are divided into two or more equal parts with six leads provided. Also dual voltage motors can be used on the lower range.	Can be used with any standard squirrel cage motor.	Can be used with any standard squirrel cage motor.
Description of Operation	The motor is connected to the line through the reduced voltage taps of an autotransformer for the starting interval and then directly across the line for running condition.	This method requires two main or line contactors to connect the motor winding in delta connection for running. A third contactor is used to form the star point on the starting step.	Like the star-delta starter, this starter requires no external equipment. One winding is connected to the line for starting. After a time interval the second or run contactor connects the other motor winding to the line in parallel with the first winding.	A high resistance is connected in series with the motor on starting and after a time interval this resistance is shortcircuited and motor is connected directly to the line.	The motor is connected to the line through the reduced voltage taps of a reactor for the starting interval and then directly across the line for running condition.
Starting Characteristics in percent of normal:	Autotransformer taps at:	100\% 33% 33%	100% Line voltage 60% 45%	80% 100% $\mathbf{4}$ \mathbf{Q} 80% 65% 64% 42%	Variable with tap setting and load.
Advantages	High torque efficiency. All the power taken from the line, except for transformer losses, is transmitted to the motor. The starting current and torque are easily adjusted by changing autotransformer taps. Closed circuit transition.	The star-delta starter provides low inrush current with high torque efficiency, without the use of any external equipment. Open circuit transition is standard but closed transition can be achieved with the use of resistors and an additional contactor.	Part-winding starting provides one-step acceleration at a reduced current. So that the second current inrush is not objectionable. Closed circuit transition.	This type provides almost as smooth starting as the reactor type starter. The current becomes lower and the voltage at the motor terminals rises as the motor accelerates. Closed circuit transition.	This type provides the smoothest starting of all reduced voltage starting methods. More suitable for jogging or inching service. Closed circuit transition.
Limitations	Torque remains practically constant for the first step and practically constant at another value for the second step.	Starting characteristics depend on motor design and cannot be adjusted. Requires special delta wound motor.	Requires special motor or dual-voltage motor on low range. Torque efficiency is usually poor for high speed motors.	Unavoidable power loss in resistor. Low torque efficiency. Duty cycle limited by thermal capacity of resistor.	Taps must be selected on job site to obtain starting voltage level suitable for the load.
Applications	Applications where there are limitations on starting voltage and current. Most widely used.	Low starting torque applications.	Commercial air conditioning equipment.	Geared or belted drives, and other delicate applications.	Textile machinery, and other driven loads requiring smooth shock-less starting.
Approximate Price Comparison (\% of Type AT)	100\%	60\%	40\%	More than 100\%	More than 100\%

[^2]
Starters - Reduced Voltage
 Autotransformer Type

1				2	3	4	5
UL/CSA Maximum HP Rating $50 / 60 \mathrm{~Hz}$				Type Insert overload relay suffix code ... from page 3/33	Enclosed		
				General Purpose Enclosure Type 1 Add suffix IS to type	Dusttight enclosure Industrial Use Type 12 Add suffix ISD to type	Weatherproof enclosure Type 3R Add suffix IDW to type	
3 phase							
$\begin{aligned} & 200 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 460 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & 575 \mathrm{~V} \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \$ \end{aligned}$	

DIL...M Contactors 1520 AT OAM/22/Z00-..				
-	-	20	25	AT 1M/22/Z1-40
-	15	25	30	AT 1AM/22/Z1-...
15	-	30	-	AT 2M/22/Z1-...
-	20	40	40	AT 2M/22/Z1-57
20	-	-	50	AT 2AM/22/Z1-...
-	25	50	-	AT 2AM/22/Z1-75
25	30	60	75	AT 3M 80/22/Z5-100
40	50	100	125	AT 4M 115/22/Z5-...

DIL... Universal Contactors				AT 3-22/Z4-100
30	-	-	-	
-	40	75	-	AT4-22/Z4-...
40	50	100	100	AT 4-22/Z4-...
50	-		125	AT 6-22/Z4-...
60	60	125	150	AT 6-22/Z4...
-	75	150		AT 6-22/Z4-...
75	-	-	-	AT 8-22/Z4-..
-	100	-	-	AT 8-22/ZW7-290
-	-	200	200	AT 8-22/Z4-240
-	-	-	250	AT 8-22/ZW7-290
100	-	-	-	AT 8A-22IZW7-290
125	125	-	-	AT 8A-22/ZW7-400
-	150	250	-	AT 8A-22IZW7-400
-	-	300	300	AT 8A-22/ZW7-400

Autotransformer with thermal protection

How to Order

$\left.\begin{array}{|l|llll|}\hline \text { To Order Specify: } & \text { Type Number } & & & \\ \begin{array}{l}\text { Type Number } \\ \text { Overload Relay suffix } \\ \text { Enclosure Suffix }\end{array} & \text { Type } & \begin{array}{l}\text { Overload } \\ \text { Coil Voltage }\end{array} & \text { Relay Suffix } & \begin{array}{l}\text { Enclosure } \\ \text { Suffix }\end{array} \\ \begin{array}{l}\text { Add Coil Voltage } \\ \text { Accessories }\end{array} & & \boxed{57} \text { from p. 3/46-47 }\end{array}\right]$

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 32$

Starters－Reduced Voltage Star－Delta Open Transition Type

1				2	3		4		5					
$\begin{aligned} & \text { UL/CSA Maximum HP } \\ & \text { Rating } 50 / 60 \mathrm{~Hz} \end{aligned}$				Type Insert overload relay suffix code ．．．from page 3／331）	Enclosed									
				General Purpose Enclosure Type 1 Add suffix IS to type		Dustight enclosure Industrial Use Type 12 Add suffix ISD to type		Weatherproof enclosure Type 3R						
3 phase														
200 V	230 V	460 V	575 V	Price \＄		Price \＄		Price \＄						
HP	HP	HP	HP											
Open Transition2）														
DIL．．．I	Contac	ors												
－	－	15	20	SD OM／22／ZO0－．．．										
－	－	25	30	SD OAM／22／ZO0－．．．										
－	15	30	40	SD 1M／22／Z1－．．．										
－	25	40	50	SD 1AM／22／Z1－．．．										
25	30	50	60	SD 2M／22／Z1－．．．	$\stackrel{\text { ® }}{ }$	－	$\stackrel{\sim}{\square}$	$\stackrel{\text { ® }}{\square}$		$\stackrel{\sim}{3}$				
30	40	75	75	SD 2AM／22／Z1－．．．	\％	®	－	©	\％	－				
40	50	100	125	SD 3M 80／22／Z4－．．．	－	－	－	三		－				
DIL．．．	iversa	Conta			¢	む	๗	$\stackrel{\otimes}{\infty}$		※				
50	－	100	－	SD 3－22／Z4－．．．	芴	芴	\pm	＋	\＃	\pm				
60	75	150	150	SD 4－22／Z4－．．．	Ј	－	－	－		－				
100	125	250	250	SD 6－22／Z4－．．．	$\stackrel{\text { O－}}{ }$	－	－	©		$\stackrel{8}{8}$				
－	150	350	400	SD 8－22／ZW7－．．．	－	－	a	吕		는				
200	250	500	－	SD 8A－22／ZW7－．．．	©	$\stackrel{\otimes}{\infty}$		$\stackrel{\otimes}{0}$		$\stackrel{\otimes}{\oplus}$				

1）Overload relays selected for setting at 58% of Motor FLC
2）For Star－Delta Closed Transition starters，please consult Moeller Electric．

Open transition starter

Standard Features

－ 3 phase overload protection for setting at 58% of Motor FLC．
－Reset button in cover．
－Standard auxiliary contacts．

How to Order

To Order Specify： Type Number Overload Relay suffix Enclosure Suffix Coil Voltage Accessories	Type Number			
		Overload	Enclosure	Add Coil Voltage
	Type	Relay Suffix	Suffix	from p．3／46－47
	SD 1M／22／Z1－．．．	40	IS	120 V 60 Hz

Additional Information	Page
Technical Data	$3 / 50$
Dimensions	$3 / 61$
Overload Relays	$4 / 2$
Accessories	$3 / 35$
Factory Modifications	$3 / 32$

Starters－Reduced Voltage Factory Modifications

Ordering Information：

Order by description

The standard modifications shown on this page are those available for factory installation．Prices for these modifications are shown in the alphanumeric price book under＂Starters－Reduced Voltage Factory Modifications＂．The enclosure may or may not change with the addition of any of these items．When accurate dimensions of the enclosure are required，refer to your nearest Moeller Electric distributor or sales office．

Price addition to Starter－Select using contactor frame size

Description	$\begin{aligned} & \text { (E)EM } \\ & \text { OOM } \\ & 00 A M \\ & \text { OM } \end{aligned}$		$\begin{aligned} & \text { 0AM } \\ & \text { 1M } \\ & \text { 1AM } \end{aligned}$		$\begin{aligned} & \text { 2M } \\ & \text { 2AM } \end{aligned}$		$\begin{aligned} & 3-22 \\ & 4-22 \end{aligned}$		3M 80		$\begin{aligned} & 4 \mathrm{M} 115 \\ & 6-22 \end{aligned}$		8－22		8A－22	
	\＄		\＄		\＄		\＄		\＄		\＄		\＄		\＄	
Control Circuit Transformers Transformer 60 Hz with fused primary	苞	$\frac{\ddot{n}}{\frac{1}{\square}}$	苞	茑	\＃181	$$	苞	艺	苞	\＃	茑	$\begin{aligned} & \stackrel{\rightharpoonup}{⿻} \\ & \stackrel{\rightharpoonup}{\triangleleft} \\ & \hline \end{aligned}$	艺	苞	$\xrightarrow{\text { Ẅ }}$	$\frac{\stackrel{\rightharpoonup}{7}}{\frac{1}{y}}$
Transformer with additional capacity up to	든	L	는	2	高	a	는	2	든	느․	高	2	高	首	든	2
$100 \mathrm{VA}, 60 \mathrm{~Hz}$ with fused primary	©	※̈	む	©	$\stackrel{\otimes}{\otimes}$	8	$\stackrel{\otimes}{\oplus}$	©	※	$\begin{aligned} & \ddot{\circ} \\ & \text { む } \end{aligned}$	$\stackrel{\otimes}{\infty}$	$\stackrel{8}{8}$	$\stackrel{\otimes}{\infty}$	8	$\stackrel{\otimes}{\otimes}$	$\stackrel{8}{8}$
Disconnect Device																
－non－fusible －fusible	苞		苞	苞	苞	苞	苞	苟	苞	$\stackrel{\text { Wr }}{\square}$			苟	苟	$\stackrel{\text { ¢ }}{\text { ¢ }}$	苟
Circuit Breaker	®	¢	®	－	$\stackrel{\text { ® }}{ }$	8	®	¢	\％	\％	$\stackrel{\text { ® }}{ }$		¢	$\stackrel{8}{2}$	－	\bigcirc
	2	2	2		늘	2	2	2	2	2．				2		2
Reversing Starters	\％	$\stackrel{8}{\circ}$	＊		\％	©	＊	8	\％	シ	＊		＊	8	®	®
To change non－reversing to reversing	¢															

Overload relay selection:

1. Select the appropriate starter by HP and motor voltage from the previous starter selection pages.
2. Determine motor full load current from motor nameplate data or by using NEC Table 430-150 (3 phase) or Table 430-148 (1 phase) located on the inside back cover of this catalog.
3. Select the overload relay whose adjustable current range includes the FLC determined above. Insert the suffix code in the starter type.

EXAMPLE:

1. Selected starter is 3 phase, 10 HP @ 460 V AC, Non-Combination, Full Voltage Non-Reversing.

From page $3 / 12$, starter type is:

DIL 0M/11/Z00-...

2. Motor Full Load Current from NEC Table 430-150 (see back inside cover) for 10 HP @ 460 V AC (3 phase) is:

14 Amps

3. The 14 Amps falls within the adjustable setting range of $10-16$ corresponding to the Overload Relay suffix code of Z00-16 from the table below. The suffix code "16" is added to complete the starter part number.
The desired contactor coil voltage from pages $3 / 46-47$ is specified at the end to complete the starter ordering information.
Complete Starter Type: DIL 0M/11/Z00-16 120V 60Hz
Overload Relay Suffix Code Selection Table

Type	Adjustable setting range	Suffix code
Z00	0.1-0.16	0.16
Z00	0.16-0.24	0.24
Z00	0.24-0.4	0.4
Z00	0.4-0.6	0.6
Z00	0.6-1.0	1.0
Z00	1.0-1.6	1.6
Z00	1.6-2.4	2.4
Z00	2.4-4	4
Z00	4-6	6
Z00	6-10	10
Z00	10-16	16
Z00	16-24	24
Z1	6-10	10
Z1	10-16	16
Z1	16-24	24
Z1	24-40	40
Z1	40-57	57
Z1	50-63	63
Z1	63-75	75
Z4	50-70	70
Z4	70-100	100
Z4	100-140	140
Z4	140-180	180
Z4	180-240	240
Z5	70-100	100
Z5	95-125	125
Z5	120-160	160
Z5	160-225	225
Z5	200-250	250
ZW7	42-63	63
ZW7	60-90	90
ZW7	85-125	125
ZW7	110-160	160
ZW7	160-240	240
ZW7	190-290	290
ZW7	270-400	400
ZW7	360-540	540

For overload relay technical information see page 4/11.

Field Modification Kits

[^3]

1) Refer to next page for side-mounted auxiliary contact combinations
2) Includes one early-make and one late-break contact pair

Contactors - Accessories

Power Pole open/enclosed

1 Pole	Ratings:	$35 / 30$	DIL OM	N DIL 0M
(A)	Continu- ous current	$55 / 44$	DIL 1M	N DIL 1M
	DIL 2M	N DIL 2M		

Auxiliary Contacts for Universal Contactors

1 Pole

DIL 3-22
DIL 4-22
DIL 6-22
DIL 8(A)-22
HSI-1
HSII-1
HSIII-1
HSI-2
DIL 3-22 through DIL 8A-22 contactors are supplied with 4 auxiliary contacts

HSII-2
(2 NO \& 2 NC). Each single pole auxiliary
HSIII-2 its function can be modified by turning it through 180°. See right and conversion information on following page for further information.

[^4]Auxiliary contact combinations for system DIL M contactors DIL OM through DIL 2AM.

Auxiliary contact modules for side and top mounting can be combined for up to a maximum of 5 auxiliary contacts.

The diagram at right shows the possible contact configurations which can be realized by combining side and top-mounted auxiliary contact modules.

For side mounting

Moeller

Contactors and Starters - Accessories

1	2	3	4	5	6
		For use with type	Type	Price \$	Remarks
Star-point Bridges	T				Finger-safe design
		00(A)M	S 1 DIL 00M		
		O(A)M	S 1 DIL OM		
		1(A)M	S 1 DIL 1M		
		2(A)M	S 1 DIL 2M		
		3M 80	S 1 DIL 3M		
		4M 115	S 1 DIL 4M		
00		$\begin{aligned} & \text { M 185, M 225, M } 250 \\ & \text { M 300, M } 400 \\ & \text { M } 500 \end{aligned}$	DIL M 400-XS1		With type DIL M 400-XS1, a DIL M 400-XHB cover is included for protection against accidental contact.
			DIL M 500-XS1		
		M 500			With type DIL M $500-\mathrm{XS} 1$, a DIL M 500-XHB cover is included for protection against accidental contact.
				菏	contact.
Paralleling Bridges For main contacts					
	4-pole	EEM, EM 00(A)M	P1 DILEM P1 DIL 00M		Finger safe design. Increases the open continuous current (ACI) value of the contactor by a factor of 2.5 . P 1 DIL EM and P 1 DIL 00M are 4 pole units. 2 per set. The $4^{\text {th }}$ pole can be broken off.
				$$	
	3 -pole	$O(A) M$	P 1 DIL 0M		
			P 1 DIL 1M		
		2(A)M	P1 DIL 2M		
		3M 80	P1 1 DLL 3M		
		4M 115	P1 DIL 4M		
		M 185	DIL M 185-XP1		A DIL M 400-XHB cover is included for protection against accidental contact.

	2	3	4
	For use with DIL...	Type	Price

Pneumatic Timer Module

Convertible $0.2-30 \mathrm{~s}$ and $20-180 \mathrm{~s}$

On-delay with $1 \mathrm{NO} / 1 \mathrm{NC}$
Off-delay with $1 \mathrm{NO} / 1 \mathrm{NC}$
${ }^{0(A) M}$ - $2 A M$
TPE 11 DIL
R
${ }_{R}^{0(A) M-2 A M}$

Mechanical Latching Module
For DC operation pulse duration of 200 ms maximum.

DC operation	$00(A) M$ R	V-G DIL
AC operation	$00(A) M$ R	V-DIL

[^5]| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| | For use with | Type | Price | Remarks |
| | | | \$ | |
| Control circuit terminals | | | | |
| | DIL O(A)M | ZK DIL OM | \& 을 | Pressure wire connectors mounted directly to the main terminals for control circuit tap-off.
 $15 \mathrm{~A}, 600 \mathrm{~V}$ max. AWG 18-14 |
| | DIL 1(A)M
 DIL 2(A)M | ZK DIL 1M | $\begin{array}{cc} \otimes \\ \oplus \\ \oplus \end{array}$ | |
| | $\begin{aligned} & \text { DIL 3M } 80 \\ & \text { DIL 4M } 115 \end{aligned}$ | ZK DIL M | | |
| | DIL 3 | BZ 260 | | |
| | DIL 4 | BZ 185 | | |
| | DIL 6 | BZ 184 | $\stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\leftrightharpoons}$ | |
| | DIL 8(A) | BZ 240 | Oi. | |

For cable conection, single or multi-stranded conductors and flexibus.

For cable conection, single or multi-stranded conductors and flexibus.

For bus and flexibus connection.

Cover provides protection against shock hazards and accidental contact.

DIL3

HV-DIL3
DIL 4
HV-DIL 4

DIL6

HV-DIL 6
DIL 8(A)
HV-DIL 8

DIL M 185	DIL M 400-XHB
DIL M 225	
DIL M 250	
DIL M 300	
DIL M 400	
DIL 4 400-XS1	
DIL M 500	DIL M 500-XHB
DIL M 500-XS1	
DIL 3	HV-DIL 3
DIL 4	HV-DIL 4
DIL 6	HV-DIL 6
DIL 8(A)	HV-DIL 8

1	2	3	4	5
	For use with	Type	Price	Remarks
			\$	
Connection tabs for fast-on connectors				
For auxiliary contact and coil connections	DIL (E)EM, DIL 00(A)M DIL O(A)M, DIL 1(A)M DiL 2 (A)M, DIL 3M 80 , DIL 4M 115. DIL $3,4,6,8(A)$	BT 4831)		Use connectors with insulated sleeves. Standard quantity: 100
Tamper-proof cover				
Transparent	DIL (E)EM	H DILE		Cover snap-fits onto the device and can be sealed to prevent tampering.
∞	$\begin{aligned} & \text { TPE } \\ & \text { TPD } \end{aligned}$	PL-DIL T	¢ ¢ ¢	Cover is fastened via a screw. Sealable to prevent access.

Couplers

Provides a mechanical link for stability when groups of components are mounted together in combinations. Mounts between contactors.

DIL (E)EM
VO DILE
DIL OO(A)M, DIL O(A)M VODIL
DIL 1(A)M, DIL 2(A)M
V/15 DIL

V10/A 5 DIL

Component Labelling System

Clip-in Label Plate

\square| $8 \times 10 \mathrm{~mm}$ |
| :--- |
| $8 \times 20 \mathrm{~mm}$ |

Label Plate with Mounting Stud

$8 \times 17.5 \mathrm{~mm}$
DIL...
...DIL
...DIL E, DIL ER...
...DIL, DIL R...

KG 101) KG 201)
...DIL, DIL R...

XGKS-Z

Adhesive Labels ${ }^{2)}$

$7.5 \times 17 \mathrm{~mm}$	XGKS-Z
Yellow	KG 20
(RAL 1018)	

Adapter with Mounting Stud

Light Grey
(RAL 7035)

Card of Label Plates ${ }^{2}$

	$8 \times 17.5 \mathrm{~mm}$	XGKS...	XGKS-T
	White		

Use connectors with insulated sleeves.
Standard quantity: 100

Cover snap-fits onto the device and can be sealed to prevent tampering.

Cover is fastened via a screw. Sealable to prevent access.

0 mm spacing between contactors (Std. qty: 50) 0 mm spacing between contactors (Std. qty: 20)
5 mm spacing between contactors, can be used with DC magnet systems 15 mm spacing between contactors, for mechanical interlock between two contactors (Std. qty: 10)

10 mm spacing between contactors, for side mounting auxiliary contacts between contactors 5 mm spacing between contactors, can be used with DC magnet systems without permanent connection (Std. qty: 10)

Clip-in type label nameplate can be marked with felt-tip pen or adhesive labels.
Clips onto 2 pole auxiliary contact modules.
Standard quantity: 500
Clips onto 4 pole auxiliary contact modules and base relays. Standard quantity: 500

For use with Moeller equipment with the corresponding mounting hole.
Standard quantity: 500

For inscription using laser printer, plotter, marker pen, photocopier
Standard quantity: Pad of 25 sheets, 240 labels per sheet, perforated and self-adhesive, for use with label plates.

Secures label type XGKS-T on Moeller equipment with corresponding mounting hole. Standard quantity: 250

Can be inscribed by marker pen or plotter by Phoenix Contact or others. Standard quantity: 10 cards. 40 labels per card.

1) Must be ordered in standard quantity.
2) Consult Moeller Electric for inscription software.

Application Notes

Interface modules incorporate contacts which are actuated upon energizing of the module from low power 24 V DC sources such as the outputs of sensors and programmable controllers. These contacts can then be used to switch in the high inrush coils of electromechanical relays and contactors which normally would be too much of a burden for these outputs. This also enables the relays and contactors to be energized directly from the AC line, thus saving the expense of more costly DC magnet systems for these components.

Control Circuit Reliability:
24 V DC voltage and current tolerances are as per DIN EN 61 131-2: At minimum actuation levels of 17 V and 5.4 mA , the error rate is less than 1 fault in 100 million operations.

At Moeller Electric，It All Starts With Quality

When you＇re looking for a motor starter that you can install and forget，you need look no further than your authorized Moeller Electric Key Distributor．There you＇ll find the culmination of over 100 years of devotion to quality and dependability． The critical components found in Moeller Electric starters are designed and produced by Moeller Electric，all with the mission to produce a starter that installs easily，in a minimum amount of space and that will withstand the rigors of a tough industrial environment．
Moeller Electric starters can be found in most environments and locations around the world．From nuclear power generating stations to cement plants，from New York City to Guangzhou，China，Moeller Electric magnetic motor starters are busy starting and stopping motors，day after day，with no required maintenance．
Call or visit your authorized Moeller Electric Key Distributor today！

Which Standard to Follow？
Moeller Electric＇s heavy－duty，industrial starters are built to withstand the most severe applications where requirements for continuous operation can place heavy demands on control equipment．
Starters are manufactured to meet or exceed the standard（s）that are applicable to your application． Whether this requires NEMA，UL／CSA，European CE or any other standard，we will quickly supply，either off－the－ shelf or custom－built，all at a very cost－effective price．

What Flavor？

Moeller Electric starters are available in a wide variety of sizes and types and many standard features that you may be now paying extra for：

Three phase bimetallic，ambient compensated overload ．．．no need to purchase，stock and install separate overload＂heaters＂．
Contactor coil pulls－in and seals－in at 80 to 110 percent of the marked rating．
Contactor coil magnet system is balanced to minimize contact bounce，one of

Contactors - Replacement Coils

[^6]
Contactors - Coils

Select the appropriate coil voltage for your system from the following list of standard and non-standard AC and DC coils.
Select by contactor type. Insert coil voltage and frequency after the contactor or starter type number.
Example:

contactor	overload relay	enclosure suffix	coil voltage
DIL 0AM/11	IZ00-16	/S	120 V 60Hz

AC					DC
DIL EEM, EM contactors					
Standard coils					
	$\begin{aligned} & 12 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \\ & 48 \mathrm{~V} 50 \mathrm{~Hz} \\ & 240 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} 60 \mathrm{~Hz} \\ & 110 \mathrm{~V} 60 \mathrm{~Hz} \\ & 115 \mathrm{~V} 60 \mathrm{~Hz} \\ & 600 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$	$42 \mathrm{~V} 50 \mathrm{~Hz}, 48 \mathrm{~V} 60 \mathrm{~Hz}$ $110 \mathrm{~V} 50 \mathrm{~Hz}, 120 \mathrm{~V} 60 \mathrm{~Hz}$ 190 V $50 \mathrm{~Hz}, 220 \mathrm{~V} 60 \mathrm{~Hz}$ $220 \mathrm{~V} 50 \mathrm{~Hz}, 240 \mathrm{~V} 60 \mathrm{~Hz}$	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ 42 V $50 / 60 \mathrm{~Hz}$ 110 V $50 / 60 \mathrm{~Hz}$ 230 V $50 / 60 \mathrm{~Hz}$	$\begin{aligned} & 12 \text { V DC } \\ & 24 \text { V DC } \\ & 48 \text { V DC } \\ & 60 \text { V DC } \end{aligned}$
			230 V $50 \mathrm{~Hz}, 240 \mathrm{~V} 60 \mathrm{~Hz}$ $380 \mathrm{~V} 50 \mathrm{~Hz}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ 400 V $50 \mathrm{~Hz}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ 415 V $50 \mathrm{~Hz}, 480 \mathrm{~V} 60 \mathrm{~Hz}$		$\begin{aligned} & 110 \mathrm{~V} D C \\ & 220 \mathrm{~V} D C \end{aligned}$
DIL M contactors					
Standard coils	$\begin{aligned} & 24 \mathrm{~V} 50 \mathrm{~Hz} \\ & 48 \mathrm{~V} 50 \mathrm{~Hz} \\ & 240 \mathrm{~V} 50 \mathrm{~Hz} \\ & 500 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} 60 \mathrm{~Hz} \\ & 115 \mathrm{~V} 60 \mathrm{~Hz} \\ & 208 \mathrm{~V} 60 \mathrm{~Hz} \\ & 600 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$	$42 \mathrm{~V} 50 \mathrm{~Hz}, 48 \mathrm{~V} 60 \mathrm{~Hz}$ 110 V $50 \mathrm{~Hz}, 120 \mathrm{~V} 60 \mathrm{~Hz}$ 190 V $50 \mathrm{~Hz}, 220 \mathrm{~V} 60 \mathrm{~Hz}$ 220 V $50 \mathrm{~Hz}, 240$ V 60Hz $230 \mathrm{~V} 50 \mathrm{~Hz}, 240 \mathrm{~V} 60 \mathrm{~Hz}$ 380 V $50 \mathrm{~Hz}, 440$ V 60Hz 400 V $50 \mathrm{~Hz}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ 415 V $50 \mathrm{~Hz}, 480 \mathrm{~V} 60 \mathrm{~Hz}$	$24 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ 42 V $50 / 60 \mathrm{~Hz}$ 110 V $50 / 60 \mathrm{~Hz}$ 230 V $50 / 60 \mathrm{~Hz}$ 380 V $50 / 60 \mathrm{~Hz}$	$\begin{aligned} & 24 \text { V DC } \\ & 48 \text { V DC } \\ & 60 \text { V DC } \\ & 110 \text { V DC } \\ & 120 V D C \\ & 220 \text { V DC } \\ & 240 \text { V DC } \end{aligned}$
Non-standard coils ${ }^{2}$					
DIL 00M DIL 00AM$\quad 12-600 \mathrm{~V} \mathrm{50} \mathrm{Hz} \mathrm{or} 12-600 \mathrm{~V} 60 \mathrm{~Hz}$					12-250 V DC
DIL OM DIL OAM	12-600 V 50 Hz or $12-600 \mathrm{~V} \mathrm{60Hz}$		DIL OAM		12-250 V DC
DIL 1AM					12-250 V DC
DIL 2AM					12-250 V DC
$\begin{aligned} & \text { DIL 3M } 80 \\ & \text { DIL 4M } 115 \end{aligned}$	$24-600$ V 50 Hz	$24-600 \mathrm{~V} \mathrm{60Hz}$			24-250 V DC

DIL 3-22 Universal Contactors

Standard coils

24 V 50 Hz	24 V 60 Hz
48 V 50 Hz	110 V 60 Hz
240 V 50 Hz	115 V 60 Hz
500 V 50 Hz	208 V 60 Hz
	600 V 60 Hz

36 V $50 \mathrm{~Hz}, 42 \mathrm{~V} 60 \mathrm{~Hz}$ $42 \mathrm{~V} 50 \mathrm{~Hz}, 48 \mathrm{~V} 60 \mathrm{~Hz}$ $110 \mathrm{~V} 50 \mathrm{~Hz}, 120 \mathrm{~V} 60 \mathrm{~Hz}$ 190 V $50 \mathrm{~Hz}, 220$ V 60 Hz 220 V $50 \mathrm{~Hz}, 240$ V 60 Hz $230 \mathrm{~V} 50 \mathrm{~Hz}, 240 \mathrm{~V} 60 \mathrm{~Hz}$ 380 V $50 \mathrm{~Hz}, 440$ V 60 Hz 400 V $50 \mathrm{~Hz}, 440$ V 60 Hz 415 V 50 Hz, 480 V 60 Hz

24 V DC
48 V DC ${ }^{1)}$
60 V DC
110 V DC
120V DC
220 V DC
240 V DC

Non-standard coils ${ }^{2)}$

24-600 V 50 Hz or $\mathbf{2 4 - 6 0 0 ~ V ~ 6 0 H z ~}$

[^7]| AC
 DIL 4-22, DIL 6-22 Universal Contactors | | | | DC |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Standard coils | $\begin{aligned} & 48 \mathrm{~V} 50 \mathrm{~Hz} \\ & 240 \mathrm{~V} 50 \mathrm{~Hz} \\ & 500 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 110 \mathrm{~V} 60 \mathrm{~Hz} \\ & 115 \mathrm{~V} 60 \mathrm{~Hz} \\ & 208 \mathrm{~V} 60 \mathrm{~Hz} \\ & 600 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$ | 42 V $50 \mathrm{~Hz}, 48 \mathrm{~V} 60 \mathrm{~Hz}$ 110 V $50 \mathrm{~Hz}, 120 \mathrm{~V} 60 \mathrm{~Hz}$ 190 V $50 \mathrm{~Hz}, 220$ V 60 Hz 220 V 50 Hz , 240 V 60 Hz 230 V 50 Hz , 240 V 60 Hz 380 V $50 \mathrm{~Hz}, 440$ V 60 Hz 400 V $50 \mathrm{~Hz}, 440$ V 60 Hz 415 V $50 \mathrm{~Hz}, 480$ V 60 Hz | $\begin{aligned} & 24 \text { V DC }{ }^{1} \\ & 48 \text { V }{ }^{11} \\ & 60 \text { V DC } \\ & 110 \text { V DC } \\ & 120 \text { V DC } \\ & 220 \text { V DC } \\ & 240 \text { V DC } \end{aligned}$ |
| Non-standard coils ${ }^{2)}$ $42-600 \mathrm{~V} 50 \mathrm{~Hz}$ or $42-600 \mathrm{~V} \mathrm{60Hz}$ | | | | |
| DIL 8-22, DIL 8A-22 Universal Contactors Standard coils | | | | |
| | $\begin{aligned} & 240 \mathrm{~V} 50 \mathrm{~Hz} \\ & 500 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 110 \mathrm{~V} 60 \mathrm{~Hz} \\ & 115 \mathrm{~V} 60 \mathrm{~Hz} \\ & 208 \mathrm{~V} 60 \mathrm{~Hz} \\ & 600 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$ | 110 V $50 \mathrm{~Hz}, 120$ V 60 Hz 190 V $50 \mathrm{~Hz}, 220$ V 60 Hz 220 V $50 \mathrm{~Hz}, 240$ V 60 Hz 230 V $50 \mathrm{~Hz}, 240 \mathrm{~V} 60 \mathrm{~Hz}$ 380 V $50 \mathrm{~Hz}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ 400 V $50 \mathrm{~Hz}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ 415 V $50 \mathrm{~Hz}, 480$ V 60 Hz | $\begin{aligned} & 24 \vee D^{11} \\ & 48 \mathrm{~V} C^{1)} \\ & 60 \mathrm{~V} D C \\ & 110 \mathrm{~V} D C \\ & 120 \mathrm{~V} D C \\ & 220 \mathrm{~V} D C \\ & 240 \mathrm{~V} D C \end{aligned}$ |
| Non-standard coils ${ }^{2}$) $110-600 \mathrm{~V} 50 \mathrm{~Hz}$ or $110-600 \mathrm{~V} \mathrm{60Hz}$ | | | | |
| S-PKZ 2 Contactor for PKZ 2/ZM-.../S-SP Self-protected Combination Controller | | | | |
| Standard coils | | $\begin{aligned} & 24 \mathrm{~V} 60 \mathrm{~Hz} \\ & 208 \mathrm{~V} 60 \mathrm{~Hz} \\ & 600 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$ | $110 \mathrm{~V} 50 \mathrm{~Hz}, 120 \mathrm{~V} 60 \mathrm{~Hz}$ $230 \mathrm{~V} 50 \mathrm{~Hz}, 240 \mathrm{~V} 60 \mathrm{~Hz}$ 415 V $50 \mathrm{~Hz}, 480 \mathrm{~V} 60 \mathrm{~Hz}$ | |

1) Requires the addition of a DC interposing relay DIL R-22-G.
2) There is an additional cost for non-standard coils.

DIL M 185/22, DIL M 225/22, DIL M 250/22, DIL M 300/22, DIL M 400/22, DIL M 500/22 Contactors
Coils \quad RDC $48 \quad$ Coil Range: $24-48$ V DC
including RA 110 Coil Range: $48-110 \mathrm{~V} 40-60 \mathrm{~Hz} / \mathrm{DC}$
electronic \quad RA $250 \quad$ Coil Range: $110-250 \mathrm{~V} 40-60 \mathrm{~Hz} / \mathrm{DC}$ module RAC 500 Coil Range: $250-500 \mathrm{~V} 40-60 \mathrm{~Hz}$

Note: Part numbers in green shaded area above must be added to complete contactor type ($\mathrm{p} 3 / 4,8$) and replacement coil type ($\mathbf{p} / 45$).

Example: DIL M185/22 (RA 110)
DIL M250-XSP/E (RA 110)

Contactors - Selection Guide

Contactors

By far the most common application of contactors is the control of electric motors. As a prime mover, the 3 phase AC motor, in particular the squirrel cage motor, dominates the field, and most of them are controlled by contactors. Contactors are expected to start, stop, reverse, plug, jog and sequence motors and, in conjunction with overload relays, to protect motors in the event of overloads.
The load rating stated in HP is the basic data required to enable the correct selection of contactors to be made, but this figure by itself is not always sufficient. The type of load, its operating cycle, switching frequency and total life required, all influence the overall stress on contactors.
The electrical durability tests of contactors, outlined in Appendix B of IEC 60 947-4, are used by manufacturers to establish contactor ratings which incorporate a sufficient and verifiable switching capability to cover a broad range of applications as defined in the IEC Utilization categories (e.g. AC3, AC-4). The IEC 60947 standard states that, with respect to its resistance to electrical wear, a contactor or starter is by convention characterized by the number of ON-LOAD operating cycles corresponding to the different utilization categories which can be made without repair or replacement. The IEC Utilization categories AC-3 and AC-4 are most often encountered in contactor applications and are outlined below. See Section 13 for additional details.
The curves at right provide a reliable guide for selection based on the electrical life desired.

Normal switching duty AC-3 Operating characteristic: Starting: From rest
 for squirrel-cage motors Stopping: After attaining full running speed

Typical applications:	Compressors	Lifts
	Pumps	Escalators
	Fans	Conveyors
	Valves	Bucket elevators

Mixers
Agitators
Centrifuges
Air conditioning systems

Electrical characteristics: Drives in general in manufacturing and processing machines
Make: up to 6 x rated motor current
Break: 1 x rated motor current
100\% AC-3

Extreme switching duty AC-4 Operating characteristic: Switching, plugging, reversing for squirrel-cage motors

Typical applications:
Printing presses
Wire drawing machines
Centrifuges
Special drives for manufacturing and processing machines

Electrical characteristics: Make: 6 x rated motor current
Break: $6 \times$ rated motor current
Utilization category:

Determination of the maximum number of operations per hour in relation to rating and utilization category

$\mathrm{Pn}=$ Maximum motor rating (kW/HP) of the contactor per pages $3 / 4 \& 3 / 8 \quad \mathrm{Ops} / \mathrm{h}=$ Maximum number of operations per hour

Type
DIL 3M80
DIL 4M115
DIL M 185
DIL M 225
DIL M 250
DIL M 300
DIL M 400
DIL M 500
AC 1 AC 3 AC 4
1
1 AC 3
4
$\begin{array}{llll} & 2 & 3 & 6\end{array}$

Type	AC 1	AC 3	AC 4
DIL E(E)M	2	1	3
DIL 00(A)M(-G)	2	1	3
DIL 0(A)M(-G)	2	1	3
DIL 1(A)M(-G)	2	1	3
DIL 2(A)M(-G)	2	1	3

Contactor life expectancy based on utilization categories at $460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

AC-3
Electrical characteristics: Make: 6 times motor FLC Break: 1 times motor FLC
Normal switching duty (100% AC-3)
Y Axis (ordinate):
Bold Numbers (HP) - 3 phase motor HP rating at $50-60 \mathrm{~Hz}$ Green Numbers (A) -3 phase motor FLC at $50-60 \mathrm{~Hz}$

AC-4
Electrical characteristics: Make: 6 times motor FLC
Break: 6 times motor FLC
Extreme switching duty (inching, plugging) ($100 \% \mathrm{AC}-4$)
Y Axis (ordinate):
Bold Numbers (HP) -3 phase motor HP rating at $50-60 \mathrm{~Hz}$ Green Numbers (A) -3 phase motor FLC at $50-60 \mathrm{~Hz}$

S-PKZ 2

Note: AC 3 and AC 4 Lifespan values for DIL 3 M 80 to 4 M 145 are determined at 400 V AC.
Apply a derating factor of $0.9(90 \%)$ for corresponding 460 V AC values.

Contactors - System DIL M

 Technical Data| | | | EEM | EM | OOM | 00AM | OM | OAM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General | | | | | | | | |
| Specifications | | | UL, CSA, IEC/EN 60 947, CE, DIN VDE 0660 | | | | | |
| Mechanical life span | | | | | | | | |
| AC operated | | $\times 106$ operations | 10 | 10 | 10 | 10 | 10 | 10 |
| DC operated | | $\times 10^{6}$ operations | 20 | 20 | 10 | 10 | 10 | 10 |
| Max. operating frequency, mechanical | | | | | | | | |
| DC operated | | ${ }_{\text {ops }} / \mathrm{h}$ | 9000 | 9000 | 9000 | 9000 | 9000 | 5000 |
| Max. operating frequency electrical | | | see diagram on Page 3/49 | | | | | |
| Climatic Proofing | | | Damp heat, constant to, IEC/EN 60 068-2-3 Damp heat, cyclic, to IEC/EN 60 068-2-30 | | | | | |
| Ambient temperature | Open Enclosed | max. $/$ min. C^{0} max. $/$ min. C^{0} | $\begin{aligned} & +50 /-25 \\ & +40 /-25 \end{aligned}$ | $\begin{aligned} & +50 /-25 \\ & +40 /-25 \end{aligned}$ | $\begin{aligned} & +50 /-25 \\ & +40 l-25 \end{aligned}$ | $\begin{aligned} & +50 /-25 \\ & +40 /-25 \end{aligned}$ | $\begin{aligned} & +50 /-25 \\ & +40 /-25 \end{aligned}$ | $\begin{aligned} & +50 /-25 \\ & +40 /-25 \end{aligned}$ |
| Impact resistance of make (break) contacts g | | | 10(8) | 10(8) | 10 | 10 | 8 | 8 |
| Dimensions | | | Page 3/61 | | | | | |
| Main contacts | | | | | | | | |
| Rated making capacity (IEC/EN 60 947) A | | | 110 | 110 | 200 | 200 | 270 | 270 |
| Rated breaking capacity IEC/EN 60947 | 220/230 V | A | 90 | 90 | 130 | 130 | 230 | 230 |
| | 380/400 V | A | 90 | 90 | 120 | 120 | 230 | 230 |
| | 500 V | A | 64 | 64 | 120 | 120 | 230 | 230 |
| | 660/690 V | A | 54 | 54 | 100 | 100 | 210 | 210 |
| Contactor life span Operations | | | See pages 3/48-49 | | | | | |
| $\begin{aligned} & \text { AC-1 duty } \\ & \text { Rated thermal current } \mathrm{I}_{\mathrm{th}} \hat{=} \text { Rated operating current } \mathrm{I}_{\mathrm{e}} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$ | | | | | | | | |
| | | | | | | | | |
| three-pole | Open | A | 20 | 20 | 20 | 20 | 35 | 35 |
| | Enclosed | A | 16 | 16 | 16 | 16 | 30 | 30 |
| single-pole | Open | A | 50 | 50/60 | 50 | 50 | 85 | 85 |
| (three/four current path | Enclosed parallel) | A | 40 | 40/50 | 40 | 40 | 75 | 75 |
| AC-3 duty
 Rated operating current I_{e} (Open and enclosed) | | | | | | | | |
| | | | | | | | | |
| | $380 / 400 \mathrm{~V}$ | A | 6.6 6.6 | 8.8 8.8 | 8.8 8.8 | 12 | 15.5 | 22.5 22.5 |
| | 500 V | A | 5 | 6.4 | 9 | 12 | 17 | 22.5 |
| | 660/690 V | | 3.5 | 4.8 | 6.7 | 9 | 13 | 17.5 |
| AC-4 duty
 Rated operating current I_{e} (Open and enclosed) | | | | | | | | |
| | | | | | | | | |
| | $380 / 400 \mathrm{~V}$ | A | 5 | 6.6 | 6.6 | 8.5 | 11.5 | 15.5 |
| | 500 V | A | 3.7 | 5 | 6.4 | 9 | 11.5 | 17 |
| | 660/690 V | A | 2.9 | 3.4 | 4.9 | 6.7 | 9 | 13 |
| Magnet system Pick-up values | | | | | | | | |
| DC operated) | Pick-up | $x \vee$ coil | - | - | 0.85-1.1 | 0.85-1.1 | 0.85-1.1 | 0.85-1.1 |
| Power consumption of the coil AC operated (dual voltage coils) | | | | | | | | |
| $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ | Pick-up | VAIW | 25/22 | 25/22 | ${ }^{67 / 52}$ | ${ }^{67 / 52}$ | 100/72 | 100/72 |
| DC operated ${ }^{1}$ | Sealed | WAW | 4.611.3 2.6 | 4.611.3 2.6 | 8.6/2.5 9.5 | 8.6/2.5 9.5 | $10 / 3$ 10 | $10 / 3$ 10 |
| | Sealed | W | 2.6 | 2.6 | 9.5 | 9.5 | 10 | 10 |
| Duty factor DF | | \% | 100 | 100 | 100 | 100 | 100 | 100 |
| Switching times at 100\% rated coil voltage (guide only) | | | | | | | | |
| Main contacts AC oper | Closing delay | g delay ms | 14-21 | 14-21 | 14-22 | 14-22 | 9-19 | 9-19 |
| | Arcing tim | time ms | 12 | 12 | ≤ 10 | ≤ 10 | <20 | <20 |

[^8]
Contactors - System DIL M Technical Data

			EEM	EM	00M	00AM	OM	OAM
Auxiliary contacts Pilot duty rating (UL/CSA)		$\begin{aligned} & A C \\ & D C \end{aligned}$	$\begin{aligned} & \text { A600 } \\ & \text { P300 } \end{aligned}$	$\begin{aligned} & \text { A600 } \\ & \text { P300 } \end{aligned}$	$\begin{aligned} & \text { A600 } \\ & \text { P300 } \end{aligned}$	$\begin{aligned} & \text { A600 } \\ & \text { P300 } \end{aligned}$	$\begin{aligned} & \text { A600 } \\ & \text { P300 } \end{aligned}$	$\begin{aligned} & \text { A600 } \\ & \text { P300 } \end{aligned}$
Operating current $\mathrm{I}_{\mathrm{e}} \mathrm{IEC/E}$ AC-15 220 380 500	60947 40 V 15 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 1.5 \\ & 75 / 25 / 15 / 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 1.5 \\ & 25 / 25 / 15 / 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 1.5 \\ & 10 / 6 / 3 / 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 1.5 \\ & 10 / 6 / 3 / 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 1.5 \\ & 10 / 6 / 3 / 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 1.5 \\ & 10 / 6 / 3 / 1 \end{aligned}$
DC-13 \quad 24/R	$\begin{aligned} & 1110 / 220 \mathrm{~V} \\ & 15 \mathrm{~ms} \end{aligned}$		2.5/2.5/1.5/.5	2.5/2.5/1.5/.5	10/6/3/1	10/6/3/1	10/6/3/1	10/6/3/1
Terminal capacity Main contacts (1 or 2 conductors per terminal)					(.75-4)	(.75-4)		$\left(\begin{array}{l}1-6 \\ 1-6)\end{array}\right.$
Solid) ${ }^{1}$	$\begin{aligned} & 1 \times(\ldots) \\ & 2 \times(\ldots) \end{aligned}$	mm mm^{2}	(.75-2.5)	(.75-2.5)			$\left(\begin{array}{c}1-6 \\ 1-6 \\ 1\end{array}\right.$	
Flexible with ferrule	$1 \times(. .$.	mm^{2}	(.75-1.5)	(.75-1.5)	(.75-4)	(.75-4)	(1-6)	(1-6)
	, $2 \times(\ldots)$	mm^{2}	(.75-1.5)	(.75-1.5)	(.75-4)	(.75-4)	(1-6)	(1-6)
Solid or stranded	Min - Max	AWG	18-14	18-14	18-10	18-10	16-10	16-10
Tightening torque		Nm	1.2	1.2	1.2	1.2	1.8	1.8
Auxiliary contacts Solid	$1 \times(\ldots)$	mm²	(.75-2.5)	(.75-2.5)	(.75-4)	(.75-4)	(.75-4)	(.75-4)
	$2 \times(\ldots)$	mm^{2}						
Flexible with ferrule	$1 \times(\ldots)$	mm^{2}	(.75-1.5)	(.75-1.5)	(.75-2.5)	(.75-2.5)	(.75-2.5)	(.75-2.5)
	2x(...)	mm^{2}	(.75-1.5)	(.75-1.5)	(.75-2.5)	(.75-2.5)	(.75-2.5)	(18-1.2
Solid or stranded	Min - Max	AWG		18-14	18-12	18-12	18-12	
Tightening torque		Nm	1.2	1.2	1.2	1.2	1.2	1.2

1) Maximum of one size difference admissible when using 2 conductors.

			PKZ 2/ZM-.../S-SP
Specifications			UL 508/CSA 22.2 No. 14, Category E self-protected control devices
Maximum continuous current		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	42 at 480 V AC 27 at 600 V AC
Maximum HP ratings 3 phase at		$\begin{aligned} & 200 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 460 \mathrm{~V} \\ & 575 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{HP} \\ & 15 \mathrm{HP} \\ & 30 \mathrm{HP} \\ & 25 \mathrm{HP} \end{aligned}$
UL listed/CSA certified maximum interrupting ratings 240 V AC 480 Y/277 V AC 600 Y/347 V AC	kA RMS kA RMS kA RMS	$\begin{aligned} & \text { sym } \\ & \text { sym } \\ & \text { sym } \end{aligned}$	$\begin{aligned} & 100 \\ & 65 \\ & 42 \end{aligned}$
System Rating			$\begin{aligned} & 600 \mathrm{Y} / 347 \mathrm{~V} \mathrm{AC} \text {, up to } 27 \mathrm{~A} \\ & 480 \mathrm{Y} / 277 \mathrm{~V} \text { AC, up to } 42 \mathrm{~A} \\ & \text { Up to } 27 \mathrm{~A}: \\ & \begin{array}{l} \text { Suitable for maximum } 600 \mathrm{VAC} \text { power distribution systems } \\ \text { when the voltage between any phase to ground does not exceed } 347 \mathrm{~V} \\ \text { Up to } 42 \mathrm{~A}: \end{array} \quad \begin{array}{l} \text { Suitable for maximum } 480 \mathrm{~V} \text { AC power distribution systems } \\ \text { when the voltage between any phase to ground does not exceed } 277 \mathrm{~V} \end{array} \end{aligned}$

Additional technical data on the PKZ 2 can be found in section 7 of this catalog.

Mounting positions

DIL EEM, EM: As required, except with terminals A1 and A2 inverted

时

DIL 00M... 2 AM:

For DC operated devices a distance of at least 5 mm separating each contacter must be maintained.

PKZ 2IZM-.../S-SP

Contactors - System DIL M

 Technical Data

[^9]
Contactors - System DIL M Technical Data

1) Maximum of one size difference admissible when using 2 conductors.

Mounting positions

DIL 00M... 2 AM:

For DC operated devices a distance of at least 5 mm separating each contacter must be maintained.

DIL 3M 80...DIL M 500:

Contactors - System DIL M...
Technical Data

			M 185	M 225	M 250	M 300	M 400	M 500
General Specifications								
			UL, CSA, IEC/EN 60 947, CE, DIN VDE 0660					
Mechanical lifespan								
AC operated		$\times 10^{6} \mathrm{ops}$	10	10	10	10	10	10
DC operated		$\times 10^{6} \mathrm{ops}$	10	10	10	10	10	10
Climatic Proofing		open enclosed	Damp heat, constant to IEC/EN 60 068, Pt. 2-3 Damp heat, cyclic, to IEC/EN 60 068, Pt. 2-30					
Ambient temperature	Open max	max./min. C^{0}	+60/-25	+60/-25	+601-25	+60/-25	+60/-25	+60/-25
Mounting position		Refer to	P. 3/53	P. 3/53	P. 3/53	P. $3 / 53$	P. 3/53	P. 3/53
impact resistance Main contacts, Duration 10 ms		g	10	10	10	10	10	10
Dimensions mm			See pages 3/61					
Main Contacts Rated max. voltage (per IEC)			1000	1000	1000	1000	1000	1000
Rated making capacity, AC cos ø to IEC/EN 60947			3000	3000	3000	6000	6000	6000
Rated breaking capacity, AC COS ø to IEC/EN 60947	220/230 V	A	2500	2500	2500	5000	5000	5000
	$380 / 400 \mathrm{~V}$	A	2500	2500	2500	5000	5000	5000
	500 V	A	2500	2500	2500	5000	5000	5000
	660/690 V	A	2500	2500	2500	3600	3600	3600
	1000 V	A	760	760	760	950	950	950
Contactor life span- AC3, AC4 ops			See pages 3/48-49					
Current heat loss (3 pole) at conventional free air thermal current rating $I_{t h}$ at $I_{e} \mathrm{AC}-3 / 400 \mathrm{~V}$		W	36	55	48	69	120	120
Continuous current UL/CSA 50/60 Hz 3 pole	open	A	225	250	350	350	450	550
AC 1-duty IEC/EN 60947 Continuous current I_{th} Δ Rated operating current I_{e} $50 / 60 \mathrm{~Hz} 3$ pole:								
	open at $40^{\circ} \mathrm{C}$	C A	276	306	367	429	551	674
	open at $50^{\circ} \mathrm{C}$	C A	246	274	329	383	493	602
	open at $55^{\circ} \mathrm{C}$	C A	235	261	313	366	470	574
	open at $60^{\circ} \mathrm{C}$	C A	225	250	300	350	450	550
AC 3-duty Rated operating current I_{e} (open at max. ambient temperature) $50 / 60 \mathrm{~Hz}$								
	$320 / 230 \mathrm{~V}$	A	185 185	225	250	300	400	500 500
	$380 / 400 \mathrm{~V}$	A	185	225	250	300	400	500
	500 V	A	185	225	250	300	400	500
	660/690 V	A	185	225	250	300	360	360
	1000 V	A	76	76	76	95	95	95
AC 4-duty Rated operating current $I_{\text {e }}$ (open at max. ambient temperature) $50 / 60 \mathrm{~Hz}$								
			136	164 164	200	240	296	360 360
	$380 / 400 \mathrm{~V}$	A	136	164	200	240	296	360
	660/690 V	A	136	164	200	240	296	296
	1000 V	A	76	76	76	95	95	95
Main Terminals via Terminal Kits (standard bolt-on termination)								
Terminal capacity								
Multi-stranded with ferrule	Min. Max.	mm^{2}	120	240	240	240	$\begin{aligned} & 70 \\ & 240 \end{aligned}$	240
(Cu cable) one conductor	Min.-Max.	AWG-kcmil	6-350	6-350	1/0-600	1/0-600	1/0-600	1)
two conductor	Min.-Max.	AWG-kcmil	6-350	6-350	1/0-500	1/0-500	1/0-500	
Tightening torque		Nm	24	24	24	24	24	24
Main Contacts DC IEC/EN 60947 (open) I ${ }_{\mathrm{e}}$ operating current DC-1, DC-3, DC-5 duty $60-220$ V DC A			300	300	300	400	400	400

1) Terminal Kit type DIL M 650-XKB-S suitable for flat Cu Flexibus connection only. Bolt-on termination (supplied standard) can accommodate crimped cable lug connection.

			M 185	M 225	M 250	M 300	M 400	M 500
Magnet System ($\mathrm{U}_{\mathrm{c}}=$ Rated Coil Voltage)								
Pick-up values AC or DC ${ }^{11}$ operated	Pick-up	xU	0.7-1.15	0.7-1.15	0.7-1.15	0.7-1.15	0.7-1.15	0.7-1.15
	Drop-out	$\mathrm{xU}_{\text {c }}$	0.2-0.6	0.2-0.6	0.2-0.6	0.2-0.6	0.2-0.6	0.2-0.6
Power consumption of the coil AC operated at $100 \% \mathrm{U}_{\text {c }}$	Pick-up	VA	250	250	250	450	450	450
		W	200	200	200	350	350	350
Multi-Voltage coils	Sealing	VA	3.3	3.3	3.3	3.3	3.3	3.3
		W	4.3	4.3	4.3	4.3	4.3	4.3
DC operated ${ }^{1}$ at $100 \% \mathrm{U}_{\text {c }}$	Pick-up	W	170	170	170	350	350	350
	Sealing	W	4.3	4.3	4.3	4.3	4.3	4.3
Duty factor DF Switching times at 100% rated coil voltage main contacts AC operated			100	100	100	100	100	100
making delay breaking delay		ms	≤ 100	≤ 100	≤ 100	≤ 80	≤ 80	≤ 80
		ms	≤ 80					
DC operated ${ }^{10} \quad \begin{aligned} & \text { making delay } \\ & \text { breaking delay }\end{aligned}$								
		ms	≤ 100	≤ 100	≤ 100	≤ 80	≤ 80	≤ 80
		ms	≤ 80					
Stability of Magnet System under variable control voltage conditions ($\mathrm{U}_{\mathrm{s}}=$ Control Voltage Supply Rating)								
Behavior of magnet system during: Voltage Interruptions								
$\begin{aligned} & \left(0 \ldots 0.2 \times U_{s}\right) \\ & \left(0 . . .0 .2 \times U_{s}\right) \end{aligned}$	$\begin{aligned} & \leq 10 \mathrm{~ms} \\ & >10 \mathrm{~ms} \end{aligned}$		Magnet system bridges the time gap. Contactor remains energized. Contactor drops out.					
Voltage dips								
$\begin{aligned} & \left(0.2 \ldots 0.6 \times U_{S}\right) \\ & \left(0.2 \ldots .6 \times U_{s}\right) \\ & \left(0.6 \ldots 0 . \ldots \times U_{s}\right) \end{aligned}$	$\leq 12 \mathrm{~ms}$		Contactor drops out.Contactor remains energized.					
Voltage surges								
$\begin{aligned} & \left(1.15 \ldots 1.3 \times U_{\mathrm{s}}\right) \\ & \left(>1.3 \times \mathrm{U}_{\mathrm{s}}\right) \\ & \left(>1.3 \times \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$	$\begin{aligned} & \leq 3 \mathrm{sec} . \\ & >3 \mathrm{sec} . \end{aligned}$		Contactor remains energized. Contactor remains energized. Contactor drops out. ${ }^{2)}$					
Start-up $0.0 .7 \times U^{\text {a }}$								
$\left(0 \ldots . .0 .7 \times U_{5}\right)$			Contactor does not energize.					
(0.7...1.15 XU_{s})			Contactor energizes. Contactor does not energize.					
Maximum allowable resistance of contact used to energize contactor via A11 terminal		$m \Omega$	≤ 500					
Maximum allowable leakage current of electronic output used to energize contactor via A11 terminal		mA	≤ 1					
PLC Signal level, in accordance with EN 61131 (Type 2)			15	15	15	15	15	15
	Low	V	5	5	5	5	5	5
Auxiliary Contacts Rated voltage		V	600	600	600	600	600	600
Pilot duty rating (UL/CSA)		AC	A 600	A 600	A 600	A 600	A600	A 600
		DC	P 300					
IEC 947 Operating Current $I_{\text {e }}$ AC-15	220/240 V	A	6	6	6	6	6	6
	$380 / 415 \mathrm{~V}$	A	4	4			4	4
	500 V	A	1.5	1.5	1.5	1.5	1.5	1.5
DC-13	$24 / 60 \mathrm{~V}$	A	10/6	10/6	10/6	10/6	10/6	10/6
$\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$	110/220 V	A	3/1	3/1	3/1	3/1	3/1	3/1
Terminal capacity (one or two conductors)								
Solid	Minimum	mm^{2}	$1 \times(.75-2.5)$					
	Maximum	mm^{2}	$2 \times(.75-2.5)$	$2 \times$ (.75-2.5)				
Flexible with ferrule	Minimum	mm^{2}	$1 \times(.75-2.5)$	1 x (.75-2.5)				
	Maximum	mm^{2}	$2 \times(.75-2.5)$	$2 \times(.75-2.5)$	$2 \times(.75-2.5)$	$2 \times$ (.75-2.5)	$2 \times$ (.75-2.5)	$2 \times$ (.75-2.5)
Solid or stranded	Min - Max	AWG	18-12	18-12	18-12	18-12	18-12	18-12
Tightening torque		Nm	1.2	1.2	1.2	1.2	1.2	1.2

1) Pure DC or from 3 phase bridge rectifier or at least two-pulse bridge rectifier. 2) Some damage to the magnet system cannot be ruled out.

Contactors - DIL Universal

Technical Data

Contactors - DIL Universal
Technical Data

1) True DC voltage or derived from a full wave 3-phase bridge rectifier or filtered 1-phase AC supply

Enclosure Suffix - Dimensional Data

AC MAGNETIC FULL VOLTAGE NON-REVERSING STARTERS (PAGE 3/14)

Type	Enclosure - w x x d		
	$\begin{aligned} & \text { IS } \\ & \text { cm (inches) } \end{aligned}$	$\begin{aligned} & \text { ISD, (IDW } \\ & \mathrm{cm} \text { (inces) } \end{aligned}$	$\text { II } \mathrm{cm} \text { (inches) }$
(E)EM/ZE-... 00(A)M/11/ZOO-...	$\begin{aligned} & 17 \times 24 \times 15 \\ & \left(65 / 8 \times 91_{2} \times 6\right) \end{aligned}$	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & (9 \times 153 / 4 \times 7) \end{aligned}$	$\begin{aligned} & 18.75 \times 25 \times 15 \\ & \left(733_{4} \times 97 / 8 \times 6\right) \end{aligned}$
OM/11/ZOO ... OAM/11/Z00....			
1M/11/Z1-... 1AM/11/Z1-...			
2M/11/Z1-.. 2AM/11/Z1-...		$\begin{aligned} & 23 \times 40 \times 17.5 \\ & (9 \times 153 / 4 \times 7) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 17.5 \\ & \left(143_{4} \times 977_{8} \times 7\right) \end{aligned}$
2AM/11+Z1-75	$\begin{aligned} & 23 \times 30 \times 17.5 \\ & (9 \times 117 / 8 \times 7) \end{aligned}$		
3M 80/11/25	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(105 \sigma_{8} \times 231 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(105 /_{8} \times 231 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 22.5 \\ & (143 / 4 \times 97 / 8 \times 87 / 8) \end{aligned}$
4M 115/11/25			$\begin{aligned} & 37.5 \times 37.5 \times 22.5 \\ & \left(143_{4} \times 143_{4} \times 877_{8}\right) \end{aligned}$
3-221/24-...	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(105 /_{8} \times 231 / 1_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(105 /_{8} \times 231 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 37.5 \times 22.5 \\ & \left(143 / 4 \times 143 /_{4} \times 877_{8}\right) \end{aligned}$
4-22124-...			$\begin{aligned} & 42.1 \times 79.6 \times 27.5 \\ & \left(1611_{2} \times 3111_{3} \times 97 / 8\right) \end{aligned}$
6-22/Z4-...	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & \left(195 \delta_{8} \times 311 / 2 \times 7\right) \end{aligned}$	$\begin{array}{\|l\|l} 50 \times 80 \times 17.5 \\ \left(195 I_{8} \times 311 / 2 \times 7\right) \end{array}$	$\begin{aligned} & 42.1 \times 79.6 \times 25 \\ & \left(1611_{2} \times 3111_{3} \times 97 / 8\right) \end{aligned}$
$\begin{aligned} & 8-22 \mid Z 4 \cdots \ldots \\ & 8-22 \mid z W 7 \ldots \\ & 8 A-22 \mid Z W 7 \ldots \end{aligned}$			-

Type	Enclosure - w x \times d		
	$\begin{aligned} & \text { IS } \\ & \mathrm{cm} \text { (inches) } \end{aligned}$	ISD, /DW cm (inches)	II cm (inches)
(E)EM-... 00(A)M-01/Z00 $0(A) M / 11 / Z 00 \ldots$	$\begin{aligned} & 17 \times 24 \times 15 \\ & (65 / 8 \times 91 / 2 \times 7) \end{aligned}$	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 153_{4} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 15 \\ & (143 / 4 \times 97 / 8 \times 6) \end{aligned}$
$0(A) M / 11+Z 1 \cdots$	$\begin{aligned} & 23 \times 30 \times 17.5 \\ & (9 \times 117 / 8 \times 7) \end{aligned}$		
1M/11/Z1-... 1AM/11/Z1-...	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 153_{4} \times 7\right) \end{aligned}$		$\begin{aligned} & 37.5 \times 25 \times 15 \\ & (143 / 4 \times 97 / 8 \times 6) \end{aligned}$
$\begin{aligned} & \text { 2(A)/M/11/Z1… } \\ & \text { 2AM/11+Z1-75 } \end{aligned}$			
3M 80/11/25-...	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(105 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(105 /_{8} \times 231 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 37.5 \times 22.5 \\ & \left(143_{4} \times 143 / 4 \times 877_{8}\right) \end{aligned}$
4M 115/11/25-...	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 37.5 \times 22.5 \\ & (143 / 4 \times 143 / 4 \times 87 / 8) \end{aligned}$
3-22/24-...	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 231 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 231 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 42.1 \times 79.6 \times 22.5 \\ & \left(161 / 2 \times 311 / 3 \times 97_{8}\right) \end{aligned}$
4-22/24-...	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	-
6-22/Z4-...	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & \left(195 /_{8} \times 311 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & \left(195 /_{8} \times 311 / 2 \times 7\right) \end{aligned}$	-
$\begin{aligned} & 8-221 Z 4-\ldots . \\ & 8-22 / Z W 7 \ldots . . \\ & 8 A-221 Z W 7 \ldots \end{aligned}$	$\begin{aligned} & 80 \times 120 \times 27.5 \\ & \left(3112_{2} \times 4711_{4} \times 10\right) \end{aligned}$	$\begin{array}{\|l\|} 80 \times 120 \times 27.5 \\ \left(311 / 2 \times 4711_{4} \times 10\right) \end{array}$	-

COMBINATION STARTERS - BREAKER TYPE (PAGE 3/22)

TypeM	Enclosure - w xhxd		
	IS cm (inches)	ISD, /DW cm (inches)	II cm (inches)
00(A)M-10/ZMIZOO-.. OM/11/ZM/ZOO-...	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & (9 \times 153 / 4 \times 7) \end{aligned}$	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 15^{3} / 4 \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 15 \\ & (143 / 4 \times 97 / 8 \times 6) \end{aligned}$
OAM/11/ZM6/Z.... 1M/11/ZM6/Z1-40 2M/11/ZM6/Z1-57 2AM/11/ZM6/Z1-...	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(101_{2} \times 231_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(101_{2} \times 231_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 17.5 \\ & (143 / 4 \times 97 / 8 \times 7) \end{aligned}$
3M 80/11/ZM6/Z5			$\begin{aligned} & 37.5 \times 37.5 \times 22.5 \\ & (143 / 4 \times 143 / 4 \times 87 / 8) \end{aligned}$
$\begin{aligned} & \text { 4M 115/11/ZM6/Z5 } \\ & \text { 4M 115/11/ZM9/Z5 } \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(1955_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 42.1 \times 79.6 \times 22.5 \\ & (165 / 8 \times 313 / 8 \times 87 / 8) \end{aligned}$
$\begin{aligned} & \text { 4-22/ZM9/Z4-140 } \\ & \text { 6-22\|ZM9/Z4-... } \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(1955_{8} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 /_{8} \times 2311_{2} \times 7\right) \end{aligned}$	-
$\begin{aligned} & \text { 8-22/ZM9/Z4-240 } \\ & \text { 8-22/ZM10/ZW7.... } \\ & \text { 8A-22\|ZM10/ZW7-... } \end{aligned}$	$\begin{aligned} & 80 \times 100 \times 27.5 \\ & (311 / 2 \times 393 / 8 \times 11) \end{aligned}$	$\begin{aligned} & 80 \times 100 \times 27.5 \\ & (311 / 2 \times 393 / 8 \times 11) \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$

Type	Enclosure - w x x d		
	IS cm (inches)	ISD, /DW cm (inches)	II cm (inches)
OOM-01ZZMIZOO.... 00AM-01ZZMIZOO...	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 15 \\ & \left(143 / 4 \times 97_{8} \times 6\right) \end{aligned}$
OM111ZMIZOO... OAM/11/ZM6/Z.. 1M111ZM66Z1-40	$\begin{array}{\|l} 27 \times 60 \times 17.5 \\ \left(1011_{2} \times 2311_{2} \times 7\right) \end{array}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 37.5 \times 17.5 \\ & \left(1433_{4} \times 143_{4} \times 7\right) \end{aligned}$
2M111ZM6/Z1... 2AM/11/ZM6/Z1....	$\begin{array}{\|l} 27 \times 60 \times 17.5 \\ \left(1011_{2} \times 2311_{2} \times 7\right) \end{array}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 37.5 \times 17.5 \\ & \left(1433_{4} \times 1433_{4} \times 7\right) \end{aligned}$
3M 80/111ZM66Z5... 4M 115/11/ZM6/25... 4M 115/11/ZM9725..	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(191_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(1911_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 42.1 \times 79.6 \times 22.5 \\ & \left(165 / /_{8} \times 313 /_{8} \times 87 / 8\right) \end{aligned}$
3-22IZM6174-...	$\begin{aligned} & 60 \times 80 \times 17.5 \\ & \left(2311_{2} \times 311 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 60 \times 80 \times 17.5 \\ & \left(2311_{2} \times 311 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 42.1 \times 79.6 \times 22.5 \\ & \left.\left(165 / /_{8} \times 313\right]_{8} \times 87 / 8\right) \end{aligned}$
4-221ZM61Z4.... 4.222ZM9174-140 6-22IZM91Z4-...	$\begin{aligned} & 60 \times 80 \times 17.5 \\ & \left(2311_{2} \times 311 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 60 \times 80 \times 17.5 \\ & \left(2311_{2} \times 311 / 2 \times 7\right) \end{aligned}$	\|-
8.22\|ZM91Z4... 8.222ZM101Z4.... 8-22IZM10IZW7.... 8A-22ZZM10IZW7....	$\left.\begin{array}{\|l\|} 80 \times 120 \times 27.5 \\ \left(3111_{2} \times 4711_{4} \times 11\right) \end{array} \right\rvert\,$	$\begin{aligned} & 80 \times 120 \times 27.5 \\ & \left(3111_{2} \times 4711_{4} \times 11\right) \end{aligned}$	$-$

The enclosure may or not change with the addition of modifications. When accurate dimensions of the enclosure are required, refer to your nearest Moeller Electric Office.

COMBINATION STARTERS - SELF-PROTECTED TYPE, FVNR (PAGE 3/20)

Type	Enclosure - w x x d		
	$\begin{aligned} & \text { IS } \\ & \mathrm{cm} \text { (inches) } \end{aligned}$	ISD, /DW Cm (inches)	II cm (inches)
PKZ 2\|ZM.../S-SP	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & (9 \times 153 / 4 \times 7) \end{aligned}$	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 153_{4} \times 7\right) \end{aligned}$	$\begin{aligned} & 37.5 \times 25 \times 12.5 \\ & \left(143 / 4 \times 97_{8} \times 6\right) \end{aligned}$

COMBINATION STARTERS - DISCONNECT TYPE (PAGE 3/24)

Type		Enclosure - w xhxd	
		$\begin{aligned} & \text { IS } \\ & \text { cm (inches) } \end{aligned}$	ISD, /DW cm (inches)
00M/11/P2-30 00AM/11/P2-30	$\begin{aligned} & \mid \mathrm{ZOO} \ldots / \mathrm{S} \\ & \mathrm{ZZOO} \ldots / \mathrm{S} \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$

$\begin{array}{ll}\text { OM/11/P2-30 } & \mid Z 00 \ldots / \mathrm{S} \\ \text { OAM/11/P2-30 } & \mid Z 00 \ldots / \mathrm{S}\end{array}$
0AM/11/P2-60 /Z1.../S
1M/11/P2-60 IZ1.../S
$\begin{array}{ll}\text { 1M/11/P2-30 } & \text { IZ1-40/S } \\ \text { 1M/11/P2-60 } & \text { IZ1-40/S }\end{array}$
1AM/11/P2-60 |Z1-..|S
$\begin{array}{ll}\text { 2M/11/P2-60 } & \text { IZ1-57/S } \\ \text { 2M/11/P2-100 } & \text { IZ1-57/S }\end{array}$
2AM/11/P2-100 |Z1~../S
2AM/11/P2-100 IZ4-../S
COMBINATION REVERSING STARTERS - DISCONNECT TYPE (PAGE 3/26)

TypeMW		Enclosure - w x \times d		
		IS cm (inches)	ISD, /DW cm (inches)	
00M/11/P2-30	IZOO-../S	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	
00AM/11/P2-30	IZ00-../s			
OM/11/P2-30	IZ00-..\|S			
OAM/11/P2-30	1Z00-../S			
0AM/11/P2-60	\|Z1-..	S		
1M/11/P2-60	\|Z1-..	S		
1M/11/P2-30	\|Z1-40/S			
1M/11/P2-60	\|Z1-40/S			
1AM/11/P2-60	\|Z1-..	S		
2M/11/P2-60	/21-57/S			
2M/11/P2-100	121-57/S			
2AM/11/P2-100	\|Z1-..	S		
2AM/11/P2-100	IZ4-...\|S			

Enclosure Suffix - Dimensional Data

AC MAGNETIC TWO-SPEED STARTER - 1 WINDING (PAGE 3/16)			AC MAGNETIC TWO-SPEED STARTER - 2 WINDING (PAGE 3/16)		
Type	Enclosure - w xhxd		Type	Enclosure - w $\mathrm{xh} \times \mathrm{d}$	
	IS cm (inches)	ISD, IDW cm (inches)		IS cm (inches)	ISD, /DW cm (inches)
2S1W 00M/Z00-...ZZ00-... 2S1W 00AM/ZOO-...IZOO-... 2S1W OM/ZOO-...IZOO-... 2S1W 0AM/ZOO-...IZOO-...	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & (9 \times 153 / 4 \times 7) \end{aligned}$	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 153 /_{4} \times 7\right) \end{aligned}$	2S2W 00M/ZOO-...IZOO-... 2S2W 00AM/ZOO-...IZOO-... 2S2W OM/ZOO-...IZOO-... 2S2W OAM/ZOO-...IZOO-...	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 15^{3} / 4 \times 7\right) \end{aligned}$	$\begin{aligned} & 23 \times 40 \times 17.5 \\ & \left(9 \times 153 / /_{4} \times 7\right) \end{aligned}$
$\begin{aligned} & \text { 2S1W 1M/Z1-...IZ1-... } \\ & \text { 2S1W 1AM/Z1-...IZ1-... } \\ & \text { 2S1W 2M/Z1-...IZ1-... } \\ & \text { 2S1W 2AM/Z1-...IZ1-... } \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & \text { 2S2W 1M/Z1-..IZ1-... } \\ & \text { 2S2W 1AM/Z1-...IZ1-... } \\ & \text { 2S2W 2M/Z1-..IZ1-... } \\ & \text { 2S2W 2AM/Z1-...IZ1-... } \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(101_{2} \times 231_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 27 \times 60 \times 17.5 \\ & \left(1011_{2} \times 2311_{2} \times 7\right) \end{aligned}$
2S1W 3-22/Z1-.../Z1-...	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & \left(195 /_{8} \times 311 / 2 \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & \left(195 /_{8} \times 311 / 2 \times 7\right) \end{aligned}$	2S2W 3-22/Z1-...\|Z1-...	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(195 / 8 \times 2311_{2} \times 7\right) \end{aligned}$	$\begin{aligned} & 50 \times 60 \times 17.5 \\ & \left(1955_{8} \times 2311_{2} \times 7\right) \end{aligned}$
2S1W 4-22/Z4-.../Z1-... 2S1W 6-22\|Z4-...IZ1-...	$\begin{aligned} & 60 \times 100 \times 17.5 \\ & (231 / 2 \times 393 / 8 \times 7) \end{aligned}$	$\begin{aligned} & 60 \times 100 \times 17.5 \\ & \left(2311_{2} \times 393 / 8 \times 7\right) \end{aligned}$	$\begin{aligned} & \text { 2S2W 4-22/Z4-..IZ1-... } \\ & \text { 2S2W 6-22/Z4-...IZ1-... } \end{aligned}$	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & (195 / 8 \times 311 / 2 \times 7) \end{aligned}$	$\begin{aligned} & 50 \times 80 \times 17.5 \\ & \left(195 \sigma_{8} \times 3111_{2} \times 7\right) \end{aligned}$
2S1W 8-22/Z4-.../Z1-... 2S1W 8-22/Z4-...ZZ4-... 2S1W 8-22/ZW7-...IZ4-... 2S1W 8A-22/ZW7-...IZ4-...	$\begin{aligned} & 80 \times 120 \times 27.5 \\ & \left(311 /{ }_{2} \times 471 / 4 \times 11\right) \end{aligned}$	$\begin{aligned} & 80 \times 120 \times 27.5 \\ & \left(3111_{2} \times 4711_{4} \times 11\right) \end{aligned}$	2S2W 8-22/Z4-...IZ1-... 2S2W 8-22/Z4-...IZ4-... 2S2W 8-22/ZW7-...ZZ4-... 2S2W 8A-22/ZW7-...IZ4-...	$\begin{aligned} & 80 \times 120 \times 27.5 \\ & (311 / 2 \times 471 / 4 \times 11) \end{aligned}$	$\begin{aligned} & 80 \times 120 \times 27.5 \\ & (311 / 2 \times 471 / 4 \times 11) \end{aligned}$

DIL E(E)M-...
DIL E(E)M-...-G

DIL 00M to DIL 2AM
DIL 00M-G to DIL 2AM-G

Maintain a minimum spacing of 5 mm between DC operated DIL OOM-G to
DIL 2AM-G contactors mounted side by side.
DIL 3M 80
DIL 4M 115

DIL 3M 80 + Z5-.../SK3
DIL 4M 115 + Z5-.../SK4

$\begin{aligned} & a 4= \text { With side mounting auxiliary contact module on DIL OM to } \\ & \text { DIL 2AM, with second side mounting auxiliary contact module } \\ & \text { type DIL M 820-XHI11-SA on DIL 3M } 80 \text { to DIL 4M 115 } \\ & \text { a5 }=\text { With N DIL.... 4th pole module } \\ & \text { c1 }=\text { With ...DI M auxiliary contact module } \\ & \text { c2 }=\text { With TP...11 DIL pneumatic timer module } \\ & \text { c3 }=\text { With V(-G) DIL mechanical latching module }\end{aligned}$

Contactors - Starters

Dimensions

DIL M 185 DIL M 300
 DIL M 225 DIL M 400
 DIL M 250 DIL M 500

DIL	M 185	M 225	M 250	M 300	M 400	M 500
a	140	140	140	160	160	160
a1	120	120	120	130	130	130
a2	160	160	160	180	180	180
b	180	180	180	200	200	200
b1	160	160	160	180	180	180
b2	164	164	164	184	184	189
b3	189	189	189	209	209	219
d1	20	20	25	25	25	35
d2	48	48	48	48	48	57
e	5	5	5	6	6	6

Contactors with Terminals Covers

DIL M 185 to DIL M 500 with DIL M．．．－XHB

DIL M 225
DIL M 250
DIL M 300
DIL M 400
DIL M 185－XP1
150
384

DIL M 500
帾

DIL M 185 to DIL M 250 with Z5－．．．／FF 250

Contactors with Star Point bridges and Terminal Covers

DIL M．．．－XS1

DIL M	$185-250$	$300-400$	500
a	150	150	176
b	127	137	146

Contactors - Starters Dimensions

Universal Contactors

$\begin{array}{ll}\text { DIL 3-22/Z4 } & \text { Reset Button } \\ \text { DIL 4-22/Z4 } & \text { MDE-287 }\end{array}$
DIL 6-22/Z4
DIL 8-22/Z4
DIL 8A-22/Z4

Minimum clearance a' and b' between DIL.../G and neighboring
Components
DIL
:---
a' $^{\prime}$
b' $^{\prime}$

DIL 8-22/ZW7
DIL 8A-22/ZW7

Contactors - Starters
 Dimensions

Reversing Contactors

DIUL E(E)M

DIUL 00 (A)M/11 to DIUL 2 (A)M/11

DIUL 3 M 80/11 to DIUL 4 M 115/11

DIUL 3 to 8 A:
Consult Moeller Electric Corporation

DIUL	$\mathbf{0 0} \mathbf{A M}$	$\mathbf{0} \mathbf{M}$ $\mathbf{0} \mathbf{A M}$	$\mathbf{1} \mathbf{~ M}$	$\mathbf{2 ~ M}$
a1	114	114	164	189
a2	100	100	150	175
a3	5	5	15	17.5
a4	90	90	120	140
c	107	112	130	135

Note: Width increases by 15 mm for reversing contactors with mechanical interlock

DIUL	$\mathbf{3}$ M 80	$\mathbf{4} \mathbf{M} \mathbf{1 1 5}$
	225	265
a1	205	245
a	268	294
b1	253	279
b	146	156

Note: Width increases by 10 mm for reversing contactors with mechanical interlock

Contactors - Starters

Dimensions
Surge Suppressors

RC DIL E

VG DIL E

Interface Modules

Paralleling Bridges
P1 DIL EM
P1 DIL... M

For Type DIL...	a	b	c		c	
00(A)M(-G)	95	5	91	(116)	65	(90)
0(A)M(-G)	114	-	103	(128)	69	(94)
1(A)M(-G)	170	9	138	(16)	79	(101)
2(A)M(-G)	188	12	138	(163)	79	(101)
3M 80	195	19	150	88		
4M 115	244	17	182	92		

Tamper-proof Transparent Cover

H DIL E

RC B DIL...
RC S DIL...
FD B DIL...
VG B DIL...
VG C DIL...

	RC B DIL	RC S DIL	FD B DIL	VG B DIL	VG C DIL
a	33	33	33	33	38
b	15	15	15	15	8
c	30	30	30	30	33

ETS 4-VS 3

Star-point Bridges

S1 DIL...M

Adapter
AK DIL...M

Type	AK DIL...	
For DIL	3M 80	4M 115
a	89	94
b	160	190
c	88	91
d	7	8.4

Supplementary Terminals
ZK DIL OM
ZK DIL 1M
ZK DIL M
HK DIL M

	ZK DIL OM		ZK DIL 1M				ZK DIL M	
DIL	$\begin{aligned} & \text { OM } \\ & \text { OAM } \end{aligned}$	$\begin{gathered} (-G) \\ (-G) \end{gathered}$	$\begin{aligned} & \text { 1M } \\ & 1 \mathrm{AM} \end{aligned}$	$\begin{gathered} (-G) \\ (-G) \end{gathered}$	${ }_{2 \mathrm{AM}}^{2 \mathrm{M}}$	$\begin{gathered} (-G) \\ (-G) \end{gathered}$	3M 80	4M 115
a	45	(45)	60	(60)	70	(70)	100	120
b	91	(91)	98	(98)	118	(118)		
${ }^{\text {b4 }}$	101	(101)	98	(98)	112.5	(112.5)	136	166
${ }^{\text {b5 }}$	${ }_{79}^{50.5}$	(50.5)	49	(49)	56.3 102	(56.3)	127	83 137
C2	79	(104)	97	(122)	102	(127)	127	137
HK DIL M)	69.5	(94.5)	80.5	(105.5)	80.5	(105.5)	102	105
C4, HK DIL m)	81.5	(106.5)	92.5	(117.5)	92.5	(117.5)		12

HK DIL M...

DIL	1M	$(-G)$	2M	$(-G)$
	1AM	$(-G)$	2AM	$(-G)$
a	60	(60)	70	(70)
b	98	(98)	118	(118)
$\mathrm{b4}$	104.5	(104.5)	123	(123)
$\mathrm{b5}$	52.3	(52.3)	1.5	(61.5)
c	97	(122)	102	(127)
C 2	73.5	(92.5)	74.2	(999.2)
c 4	107.4	(132.4)	107.7	(132.7)

Mechanical Interlocks

MV DIL M
DIL M 500-XMV

V-DIL...:
Consult Moeller Electric Corporation

MV DIL E

Cable Terminal Blocks

DIL M...-XKU-S

For DIL M	$185-225$	250	$300-400$
b	198	198	218

DIL M 500-XKB-S

For DIL M	500
a	171
b	232

[^0]: 1) UL listed Starters through 50 HP at 460 V .
 2) Separate winding Starters are for Wye-Connected motors only. For other winding configurations, use corresponding price from Column 5 and supply a motor winding connection diagram in addition to the complete ordering information referenced below.
 3) General Purpose Enclosure Type 1. For other special purpose enclosures consult Moeller Electric.
[^1]: 1）Recommended Class J Time－Delay Fuse Ampacity．
 Range： 1.25 to 1.5 times motor full load current
 2）UL listed short circuit withstand of fusible starters with class J fuses is 100 kA RMS sym．at 480 VAC ．
 3）Contactors equipped with 1 NC auxiliary contact only for electrical interlocking purposes．For additional auxiliary contacts see page $3 / 35$ ．

[^2]: 1) Please contact Moeller Electric for information about these items.
[^3]: 1) The standard enclosure may or may not have room for the addition of a control transformer. Consult Moeller Electric.

 Transformers are dual voltage primary: 220-240 V/440-480 V; single voltage secondary: 110-120 V. Class CC primary fusing supplied as standard. Consult Moeller Electric for secondary fusing options and fuseless primary/secondary protection alternatives.

[^4]: 1) Late-break contact
 2) Includes one early-make and one late break contact pair.
[^5]: 1) Must be ordered in standard quantity.
[^6]: 1) Coils G-DIL 3M and G-DIL 4M are protected against overvoltages by means of varistor suppressors as standard.
[^7]: 1) Requires the addition of a DC interposing relay DIL R-22-G.
 2) There is an additional cost for non-standard coils.
[^8]: 1) True $D C$ voltage or derived from a full wave 3 -phase bridge rectifier of filtered 1 -phase $A C$ supply.
[^9]: 1) At maximum allowable ambient temperature
 2) True $D C$ voltage or derived from a full wave 3-phase bridge rectifier of filtered 1-phase AC supply.
