## User Manual

## MFD-Titan <br> Multi-Function Display

06/04 AWB2528-1480GB

All brand and product names are trademarks or registered trademarks of the owner concerned.

1st published 2003, edition date 06/03
$2^{\text {nd }}$ edition 06/2004
See revision protocol in the "About this manual" chapter
© Moeller GmbH, 53105 Bonn

Author: Dieter Bauerfeind
Editor: Heidrun Riege
Translator: Terence Osborn
All rights reserved, including those of the translation.
No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Moeller GmbH, Bonn.

Subject to alteration without notice.

Warning! Dangerous electrical voltage!

## Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighbouring units that are live.
- Follow the engineering instructions (AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergencystop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).


## Contents

About This Manual ..... 9
Device designation ..... 9
Writing conventions ..... 9
List of revisions ..... 10
1 MFD-Titan ..... 13
Target readership ..... 13
Proper use ..... 13

- Improper use ..... 13
Overview ..... 14
Device overview ..... 16
- MFD devices at a glance ..... 16
- Type references for the MFD-Titan ..... 18
MFD operation ..... 18
- Buttons ..... 18
- Moving through menus and choosing values ..... 19
- Selecting main and system menu ..... 20
- MFD-Titan Status display ..... 20
- Status display for local expansion ..... 21
- MFD-Titan advanced Status display ..... 21
- MFD-Titan LED display ..... 21
- Menu structure ..... 23
- Selecting or toggling between menu items ..... 29
- Cursor display ..... 30
- Setting values ..... 30
2 Installation ..... 31
Mounting ..... 31
Connecting the expansion unit ..... 49
Terminals ..... 49
- Tool for cage clamp terminals ..... 49
- Connection cross-sections of the MFD cage clamp terminal cables ..... 49
- Tool for slot-head screws for easy expansion unit ..... 49
- Connection cross-sections of screw terminal cables ..... 49
Network cables and plugs ..... 50
Connecting the power supply ..... 50
- Cable protection ..... 54
Connecting the inputs ..... 55
- Connecting the AC inputs ..... 55
- Connecting MFD-DC inputs ..... 60
Connecting the outputs ..... 66
Connecting relay outputs ..... 67
- MFD-R. ..... 67
- EASY6..-..RE.. ..... 68
- EASY2..-RE ..... 68
Connecting transistor outputs ..... 69
- MFD-T.. ..... 69
- EASY6..-DC-TE ..... 69
Connecting analog outputs ..... 71
- Connecting servo valves ..... 72
- Setpoint entry for a drive ..... 72
Connecting the NET network ..... 73
- Accessories ..... 73
- Cable length and cross-sections ..... 74
- Plugging and unplugging network cables ..... 76
Connecting the serial interface ..... 78
Expanding inputs/outputs ..... 81
- Local expansion ..... 81
- Remote expansion ..... 83
3 Commissioning ..... 85
Switching on ..... 85
Setting the menu language ..... 85
MFD operating modes ..... 86
Creating your first circuit diagram ..... 87
- Starting point Status display ..... 89
- Circuit diagram display ..... 90
- From the first contact to the output coil ..... 91
- Wiring ..... 92
- Testing the circuit diagram ..... 94
- Deleting the circuit diagram ..... 97
- Fast circuit diagram entry ..... 97
Configuring an easy-NET network ..... 98
- Entering the network station number ..... 99
- Entering network stations ..... 100
- Configuring an easy-NET network ..... 101
- Changing the easy-NET network configuration ..... 102
- Displaying the Status display of other stations ..... 103
Configuring the interface for the COM-LINK mode ..... 104
- Setting up the COM-LINK ..... 105
Terminal mode ..... 109
- Terminal mode ..... 109
4 Wiring with MFD-Titan ..... 119
MFD-Titan operation ..... 119
- Buttons for drawing circuit diagrams and function block usage ..... 119
- Operating principles ..... 120
- Usable relays and function blocks (coils) ..... 128
- Markers, analog operands ..... 131
- Number formats ..... 135
- Circuit diagram display ..... 135
- Saving and loading programs ..... 137
Working with contacts and relays ..... 138
- Creating and modifying connections ..... 141
- Inserting and deleting a rung ..... 143
- Saving circuit diagrams ..... 144
- Aborting circuit diagram entry ..... 144
- Searching for contacts and coils ..... 144
- "Go to" a rung ..... 145
- Deleting the rung ..... 145
- Switching via the cursor buttons ..... 146
- Checking the circuit diagram ..... 147
- Function block editor ..... 148
- Checking function blocks ..... 152
- Coil functions ..... 153
Function blocks ..... 158
- Analog value comparator/threshold value switch ..... 160
- Arithmetic function block ..... 163
- Data block comparator 167
- Data block transfer 174
- Boolean operation 185
- Counters 188
- High-speed counters 194
- Frequency counters 195
- High-speed counters 199
- High-speed incremental encoder counters 205
- Comparators 210
- Text output function block 212
- Data function block 213
- PID controller 215
- Signal smoothing filter 221
- GET, fetch a value from the network 224
- Seven-day time switch 226
- Year time switch 231
- Value scaling 235
- Jumps 239
- Master reset 242
- Numerical converters 243
- Operating hours counter 249
- PUT, send a value onto the network 250
- Pulse width modulation 252
- Setting date/time 255
- Set cycle time 256
- Timing relay 259
- Value limitation 272
- Example with timing relay and
counter function block

5 Visualization with MFD-Titan 279
Screens 279

- Memory division 280
- Western European character table 281

Screen overview 283
Screen editor 285

- Static text 285
- Bit display 289
- Date and time 293
- Bitmap 296


## Contents

- Numerical value ..... 302
- Example - numerical value: ..... 304
- Value entry ..... 313
- Message text ..... 320
Button editor ..... 333
- Select an operable screen element ..... 333
- Display backlight ..... 333
- Screen change ..... 333
- Password logout ..... 334
- Set variable to fixed value ..... 334
- Increment variable ..... 334
- Decrement variable ..... 334
- Changeover relay ..... 334
6 easy-NET Network, COM-LINK Serial Connection ..... 335
Introduction to easy-NET ..... 335
easy-NET network topologies, addressing and functions ..... 336
- Loop through the unit wiring method ..... 336
- T connector and spur line ..... 336
- Position and addressing of the operands via easy-NET ..... 338
- Possible write and read authorisation in the network ..... 340
Configuration of the easy-NET network ..... 341
- Station number ..... 341
- Transmission speed ..... 341
- Pause time, changing the write repetition rate manually ..... 342
- Automatic change of the RUN and STOP mode ..... 343
- Input/output device (REMOTE IO) configuration ..... 344
- Station message types ..... 345
- Transfer behaviour ..... 345
- Signs of life of the individual stations and diagnostics ..... 346
Introduction to COM-LINK ..... 350
- Topology ..... 351
- Configuration of the COM-LINK ..... 354
7 MFD Settings ..... 359
Password protection ..... 359
- Password setup ..... 360
- Selecting the scope of the password ..... 361
- Activating the password ..... 362
- Unlocking MFD ..... 363
Changing the menu language ..... 366
Changing parameters ..... 367
- Adjustable parameters for function blocks ..... 368
Setting date, time and daylight saving time ..... 369
Changing between winter/summer time (DST) ..... 370
Activating input delay (debounce) ..... 372
- Deactivating debounce (input delay) ..... 372
Activating and deactivating the $P$ buttons ..... 373
- Activating the P buttons ..... 373
- Deactivating the P buttons ..... 374
Startup behaviour ..... 374
- Setting the startup behaviour ..... 374
- Behaviour when the circuit diagram is deleted ..... 375
- Behaviour during upload/download to card or PC ..... 375
- Possible faults ..... 376
- Card startup behaviour ..... 376
- Terminal mode ..... 377
Setting LCD contrast and backlight ..... 378
Retention ..... 380
- Requirements ..... 381
- Setting retentive behaviour ..... 381
- Deleting ranges ..... 382
- Deleting retentive actual values of markers and function blocks ..... 382
- Transferring retentive behaviour ..... 383
Displaying device information ..... 384
8 Inside MFD ..... 387
MFD Program cycle ..... 387
- How MFD evaluates the high-speed counters $\mathrm{CF}, \mathrm{CH}$ and Cl ..... 391
- Memory management of the MFD-Titan ..... 391
Delay times for inputs and outputs ..... 392
- Delay times for the MFD inputs ..... 393
Monitoring of short-circuit/overload with EASY..-D.-T.. ..... 395
Expanding MFD-Titan ..... 397
- How is an expansion unit recognised? ..... 397
- Transfer behaviour ..... 398
- Function monitoring of expansion units ..... 398
QA analog output ..... 400
Loading and saving programs ..... 400
- MFD without display and keypad ..... 400
- Interface ..... 401
- Memory card ..... 401
- EASY-SOFT-PRO ..... 406
Device version ..... 408
Appendix ..... 409
Technical data ..... 409
- General ..... 409
- CPU, real-time clock/timing relay/memory ..... 417
- Transistor outputs ..... 424
- Analog output ..... 427
- easy-NET network ..... 428
List of the function blocks ..... 430
- Function blocks ..... 430
- Function block coils ..... 431
- Function block output (operands) ..... 434
- Other operands ..... 434
Memory requirement ..... 435
Index ..... 437


## About This Manual

This manual describes the installation, commissioning and programming (circuit diagram generation) of the MFD-Titan control relay.

A specialist knowledge of electrical engineering is needed for commissioning and creating circuit diagrams. When active components such as motors or pressure cylinders are controlled, parts of the system can be damaged and persons put at risk if the MFD device is connected or programmed incorrectly.

## Device designation

This manual uses the following abbreviated designations for different device models:

- MFD-Titan
- MFD
- easy-AC for EASY618-AC-RC
- easy-DC for EASY6..-DC-.E

Symbols used in this manual have the following meanings:

- Indicates actions to be taken.



## Attention!

Warns of the possibility of light damage.


## Caution!

Warns of the possibility of serious damage and slight injury.


## Warning!

Warns of the possibility of substantial damage, serious injury or death.
$\rightarrow \quad$ Indicates interesting tips and additional information
For greater clarity, the name of the current chapter is shown in the header of the left-hand page and the name of the current section in the header of the right-hand page. This does not apply to pages at the start of a chapter and empty pages at the end of a chapter.

## List of revisions

| Edition | Page | Topic | New | Changed | Removed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 06/04 | 9 | Device designation |  | $\checkmark$ |  |
|  | 30 | Section "Setting values" |  | $\checkmark$ |  |
|  | 64 | Section "Temperature sensor, brightness sensor, 20 mA sensor" |  | $\checkmark$ |  |
|  | 73 | Connection cable: |  | $\checkmark$ |  |
|  | 74 | Section "Cable length and crosssections" |  | $\checkmark$ |  |
|  | 117 | Initialise display | $\checkmark$ |  |  |
|  | 131 | Table 8 |  | $\checkmark$ |  |
|  | 132 | Section "Composition of the markers" |  | $\checkmark$ |  |
|  | 194 | High-speed counters |  | $\checkmark$ |  |
|  | 203 | Figure 105 |  | $\checkmark$ |  |
|  | 226 | Section "Function of the GET function block" |  | $\checkmark$ |  |
|  | 233 | Section "Function of the year time switch function block" |  | $\checkmark$ |  |
|  | 250 | Section "Accuracy" |  | $\checkmark$ |  |
|  | 254 | Section "Function of the pulse width modulation function block" |  | $\checkmark$ |  |


| Edition | Page | Topic | New | Changed | Removed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 06/04 | 261 | Section "Time range" |  | $\checkmark$ |  |
|  | 262 | Section "Variable setpoint values" |  | $\checkmark$ |  |
|  | 265 | Figure 101 |  | $\checkmark$ |  |
|  | $\begin{aligned} & 266, \\ & 267 \end{aligned}$ | Figure 135 and Figure 136 |  | $\checkmark$ |  |
|  | 279 | Chapter 5 | $\checkmark$ |  |  |
|  | 365 | Section "Password incorrect or no longer known" |  | $\checkmark$ |  |
|  | 391 | Section "Memory management of the MFD-Titan" |  | $\checkmark$ |  |
|  | 401 | Section "Memory card" |  | $\checkmark$ |  |
|  | 406 | Section "EASY-SOFT-PRO" |  | $\checkmark$ |  |
|  | 412 | Graphic Dimensions of the MFD-80.. display/operating unit |  | $\checkmark$ |  |
|  | 413 | Graphic Dimensions of the MFD-CP8.. power supply/CPU module. |  | $\checkmark$ |  |
|  | 414 | Climatic ambient conditions |  | $\checkmark$ |  |
|  | 414 | Ambient mechanical conditions |  | $\checkmark$ |  |
|  | 415 | Electromagnetic compatibility (EMC) |  | $\checkmark$ |  |
|  | 415 | Dielectric strength |  | $\checkmark$ |  |
|  | 416 | Operating buttons, input current |  | $\checkmark$ |  |

## 1 MFD-Titan

## Target readership

MFD must only be installed and wired up by trained electricians or other persons familiar with the installation of electrical equipment.

A specialist knowledge of electrical engineering is needed for commissioning and creating circuit diagrams. When controlling active components such as motors or pressure cylinders, parts of the system can be damaged and persons put at risk if MFD is connected or programmed incorrectly.

## Proper use

MFD is a programmable device that provides HMI , switching, closed-loop and open-loop control functions, and can be used to replace relay and contactor controls as well as being used as an MFD device. MFD must be properly installed before use.

The display and operating unit of the MFD is protected to IP65 and does not normally require any special housing protection. The rear MFD units are designed as mounting units and must be installed in an enclosure, control cabinet or a service distribution board. Both the power feed and the signal terminals must be laid and covered so as to prevent accidental contact.

The installation must comply with regulations for electromagnetic compatibility (EMC).

The power up of the MFD must not cause any hazards arising from activated devices, such as unexpected motor startups or power ups.

## Improper use

MFD should not be used as a substitute for safety-related controls such as burner or crane controls, emergency-stop or two-hand safety controls.

## Overview

MFD-Titan is an electronic HMI unit and control relay with the following features:

- Logic functions,
- Timing relay and counter functions,
- Time switch functions,
- Arithmetic functions,
- PID controllers,
- Operator and display functions.

MFD-Titan is a display, HMI, control and input device in one. With MFD-Titan you can create solutions for domestic applications as well as for tasks in machine and plant construction. MFD-Titan is a modular and flexible device.

The integral easy-NET network enables the connection of up to eight easy-NET stations to form a single control system. Each easy-NET station can contain a program. This allows the design of systems using high-speed controllers with decentralised intelligence.

In Terminal mode, the MFD can be used to control any device in the network and display data from it, regardless of whether it is an easy800 or an MFD. In this mode, the MFD makes its keypad and display available to the other device for use.

Two devices, MFD with easy800 or MFD, can be connected simply via the serial interfaces.

Circuit diagrams are connected up using ladder diagrams, and each element is entered directly via the MFD display. For example, you can:

- connect make and break contacts in series and in parallel
- switch output relays and auxiliary contacts,
- define outputs as coils, impulse relays, rising or falling edge-triggered relays or as latching relays,
- select timing relays with different functions:
- on-delayed,
- on-delayed with random switching,
- off-delayed,
- off-delayed with random switching,
- on and off delayed,
- on and off delayed with random switching,
- single pulse,
- synchronous flashing,
- asynchronous flashing.
- use up and down counters,
- count high-speed signals:
- up and down counters with upper and lower limit values,
- preset,
- frequency counters,
- high-speed counters,
- count incremental encoder values.
- compare values,
- display graphics, texts, variables, enter setpoints, display flashing values and graphics, change and replace graphics and texts by pushbutton,
- process additional inputs and outputs,
- use 7-day and year time switches,
- count operating hours (operating hours counter),
- communicate via the integrated easy-NET network,
- set up point-to-point communication via the serial interface,
- provide closed-loop control with P, PI and PID controllers,
- scale arithmetic values,
- output manipulated variables as pulse-width modulated signals,
- run arithmetic functions:
- add,
- subtract,
- multiply,
- divide.
- track the flow of current in the circuit diagram,
- load, save and password-protect circuit diagrams.

If you prefer to wire up MFD-Titan from a PC, then use EASY-SOFT-PRO. EASY-SOFT-PRO allows you to create and test your circuit diagram on the PC. All display and operator functions on the MFD device are created exclusively using the EASY-SOFT-PRO software. EASY-SOFT-PRO is also used to print out your circuit diagram in DIN, ANSI or easy format.

## Device overview

## MFD devices at a glance

## Display and operating unit



Figure 1: Overview of the display and operating unit
(1) DEL button
(2) Graphic display
(3) ALT button
(4) LEDs for signalling
(5) Mode button
(6) Right, down cursor buttons
(7) OK button
(8) Left, up cursor buttons
(9) ESC button

## Power supply and CPU



Figure 2: Device overview of power supply and CPU
(1) Power supply
(2) easy-NET terminals
(3) EASY-LINK terminal
(4) Interface for memory card, PC and point-to-point connection
(5) Power supply / operating mode LED
(6) easy-NET LED

## Inputs/outputs



Figure 3: Device overview of inputs/outputs
(1) Inputs
(2) Analog output (optional)
(3) Outputs

Type references for the MFD-Titan
MFD-xxx x

## MFD operation

DEL

Buttons
DEL: Delete object in circuit diagram
ALT: Special functions in circuit-diagram, Status display
Cursor buttons < > ^ $\vee$ :
Move cursor
Select menu items
Set contact numbers, contacts and values
OK: Next menu level, Save your entry
ESC: Previous menu level, Cancel
*: Toggle between visualization display and Status display close Terminal mode

In visualization applications, the operating unit can be used for other functions than the ones stated above. In this case the buttons are assigned the function selected in the application. The standard button functions are only restored when you leave the application.

Moving through menus and choosing values

| DEL And ALT | Show System menu |
| :--- | :--- |
| Go to next menu level |  |
| Select menu item |  |
| Activate, modify, save your entry |  |
| Return to last menu level |  |
| Cancel your entry since the last OK |  |
| A $V$ Change menu item |  |



MFD-Titan Status display


On: 1, 2, 3, 4/off:...

## Status display for local expansion



## MFD-Titan advanced Status display



FE : Retention switched on
I : Debounce switched on
NTI: easy-NET station with station address
$\square \mathrm{my}$ The COM connection is active
FIL: AC expansion functioning correctly
[II: DC expansion functioning correctly
Gu : Bus coupling module detected
GW flashes: Only easy200-easy detected. I/0 expansion not detected.
$s T$ : When the power supply is switched on, MFD switches to STOP mode

## MFD-Titan LED display

MFD-Titan features two LEDs on the back of the MFD-CP... power supply /CPU device. These indicate the status of the power supply (POW) and the RUN or STOP operating mode $(\rightarrow$ Fig. 1, Page 16).

Table 1: Power supply/RUN-STOP mode LED

| LED OFF |  | No power supply |
| :--- | :--- | :--- |
|  |  | LED continuously lit |
|  | PED flashing |  |

Table 2: easy-NET LED (easy-NET)

| LED OFF | easy-NET not operational, fault, in <br> configuration |  |
| :--- | :--- | :--- |
|  | LED continuously lit | easy-NET is initialised and no station has <br> been detected. |
|  | LED flashing | easy-NET operating fault-free |

The front of the MFD-80.. device has a green LED and a red LED. These can be used in your visualization application as light indicators.

The following applies to Terminal mode:
Green LED

Table 3: Power supply/RUN-STOP mode LED

| LED OFF |  | No power supply |
| :--- | :--- | :--- |
|  |  | PED continuously lit |
|  | Power supply present, STOP mode |  |
| Red LEshing |  | Power supply present, RUN mode |

Table 4: Fault on the easy-NET

| LED OFF | Operation correct |
| :--- | :--- |
|  | LED continuously lit |
|  |  |

## Menu structure

## Main menu without password protection

- You access the main menu by pressing OK.


## Main menu





TERNITNFL MODE


Only one selection is possible.
FROGPAM. .


## Main menu with password protection



## MFD-Titan system menu

- The System menu is accessed by simultaneously pressing DEL and ALT.

Password



System menu


## System menu



System menu



This menu only appears
if COM-LINK was selected.

Selecting or toggling between menu items

| 4 | FROEFAM. . <br> STOF <br> FAFHPNETEF: <br> SET ELOLK. |
| :---: | :---: |

Cursor ^
STOF
FFRFPIETEFS
EET LLOTK...
 $\checkmark$

## Cursor display

| $\mathrm{HH}: 1 \mathrm{H}$ DO．AN YEAF： | $\begin{array}{r} \text { } 4.23 \\ 05.05 \\ 20103 \end{array}$ |
| :---: | :---: |

The cursor flashes．
Full cursor 嘼／：
－Move cursor with $\rangle$ ，
－in circuit diagram also with

HH：快 14：23
00.410 .15 .05

YEFF 20日B

Value ${ }^{1 / 1 / W}$
－Change position with $\langle>$
－Change values with $\wedge \vee$
Flashing values／menus are shown in grey in this manual．

## Setting values



Change value
Select cursor position in value $\langle>$ Change value at position $\wedge$

OK
Store entries

Retain previous value

## 2 Installation

The MFD must only be installed and wired up by qualified electricians or other persons familiar with the installation of electrical equipment.

## Danger of electric shock!

Never carry out electrical work on the device while the power supply is switched on.

Always follow the safety rules:

- Switch off and isolate,
- Ensure that the device is no longer live,
- Secure against reclosing,
- Short-circuit and ground,
- Cover adjacent live parts.

The MFD is installed in the following order:

- Mounting,
- Wiring up the inputs,
- Wiring up the outputs,
- Wiring up the NET network (if required),
- Setting up the serial interface (if required),
- Connecting the power supply.


## Mounting

Install the display/operating unit of the MFD in the front of a control cabinet, a service distribution board, operator panel or in an enclosure. Install the power supply/CPU module and the input/output module so that all the terminals are protected against direct contact, liquids and dust during operation.
When using the MFD without a display/operating unit, snap it onto a IEC/EN 60715 top-hat rail or fix it in place using fixing brackets. The MFD can be mounted either vertically or horizontally.

When using the MFD with expansion units, connect the expansion concerned before mounting (see $\rightarrow$ page 49).

For ease of wiring, leave a gap of at least 3 cm between the MFD terminals and the wall or adjacent devices.


Figure 4: Clearances to the MFD

## Fitting the protective membrane

For special applications such as in the food industry, the operating unit must be protected against the ingress of dust, liquids etc.

For this use the specially designed protective membrane.
Fit the protective membrane before mounting the display/ operating unit.

## Mounting



Figure 5: Fitting the protective membrane
(1) Protective membrane
(2) Display/operating unit

- Place the protective membrane over the display/operating unit.


## Caution!

Ensure that the membrane fits snugly in the groove of the display/operating unit.

Otherwise a proper seal cannot be guaranteed and particles may enter underneath the membrane. This may cause malfunctions in the keypad.

In food industry applications, there is the risk of bacteria building up underneath the membrane.


Figure 6: Correct position of the protective membrane

$\rightarrow$If the protective membrane has to be replaced, the display and the operating unit have to be removed. Replace the membrane and refit the device.

## Mounting the protective cover

The protective cover is provided for using the device in aggressive environments. This protects the display and the operating unit against mechanical damage or destruction. Protection to IP65 is maintained.

The protective cover can be opened so that the operating unit can be used.

The protective cover can be closed with a sealing facility to provide protection against unauthorised operation.

Before mounting the display/operating unit, fit the protective cover.


Figure 7: Removing the front frame

- Remove the front frame as shown in the figure.

The protective cover can be mounted in two different positions. Choose the position that is most suitable for the application at hand and your requirements.


Figure 8: Position of the protective cover


Figure 9: Mounting the protective cover

- Mount the protective cover as shown in the figure.


## Sealing the protective cover



Figure 10: Sealing the protective cover
The grip handle of the protective cover is provided with holes that can be used in any mounting position. You can fit a wire or similar material through these holes in order to seal the cover. If the wire is provided with a lead seal, the cover is sealed. The cover can then only be opened by breaking the seal or the wire.

## Mounting

## Mounting the display/operating unit, "front mounting"



Figure 11: Drill holes for the MFD

- Drill and punch out two 22.5 mm diameter holes. The diameter is the same as is normally required for control circuit devices.


## $\rightarrow$

Observe the following technical requirements:

- The hole spacing is 30 mm .
- The maximum thickness of the front plate for mounting the power supply/CPU module must not be more than 6 mm.
- The maximum thickness of the front plate for mounting an expansion unit with a top-hat rail in addition to the power supply/CPU module must not be more than 4 mm .
- Leave enough space at the side for the power supply/ CPU module, and if necessary, the expansion unit.
- In order to ensure protection to IP65, the surface of the mounting front must be even and smooth.


Figure 12: Mounting the display/operating unit

The protective membrane or the protective cover must be fitted.

- Fit the display/operating unit in the punched fixing holes.


## Mounting



Figure 13: Screw fastening the display/operating unit

- Screw fasten the display/operating unit.

The tightening torque must be between 1.2 and 2 Nm

$$
\longrightarrow \quad \begin{aligned}
& \text { Ensure that the correct torque is used. If the tightening } \\
& \text { torque is too low or high, this may impair the seal. }
\end{aligned}
$$



Figure 14: Mounting the display/operating unit, front mounting
Use the combination box spanner with the designation M22-MS.

## Removing the display/operating unit, "front mounting"

Unscrew the fixing element and remove the display/ operating unit.

## Mounting the power supply/CPU module

If you wish to add expansion units to the power supply/CPU module, the top-hat rail must be fitted beforehand.

## Fitting the top-hat rail

Ensure that the cutout of the top-hat rail was prepared for the fixing shafts according to the specified dimensions.


Figure 15: Top-hat rail with cutout

The two fixing shafts of the display/operating unit are designed for a 2 space unit expansion device.

If you wish to fit wider expansion units, the top-hat rail must be supported at a third support point.

This third support point should be located in the area 216 mm from the end of the device. It should not be possible to twist the top-hat rail.

## Mounting

## Caution!

The fixing shafts of the display/operating unit are designed for mounting the expansion units. Other devices such as contactors must not be mounted on this top-hat rail.

Attach the expansion unit before fitting the top-hat rail.


Figure 16: Fitting the top-hat rail

- Fit the top-hat rail in the groove using the slide catch of the power supply/CPU module and the expansion unit.
- Turn the top-hat rail towards the housing.
- Let the top-hat rail snap into position.
- Press the power supply/CPU module onto the fixing shaft.


Figure 17: Fitting the CPU with and without top-hat rail

Mounting the inputs/outputs onto the power supply/ CPU module


Figure 18: Plugging in the I/O module
$\rightarrow \quad$ The inputs/outputs can be mounted before or after mounting the power supply/CPU module onto the fixing shaft.


Figure 19: CPU with I/O module

## Removing the inputs/outputs



Figure 20: Releasing the I/O module

- Press the two catches together.
- Pull one side out of the catch.
- Pull the other side out of the second catch.


Figure 21: Removing the I/O module

- Remove the I/O module.


## Mounting

## Removing the power supply/CPU module

 The power supply/CPU module can be removed with or without the I/O module.$\rightarrow$
If there is another fixing point for the top-hat rail, apart from the one for the display/operating unit, undo it.


Figure 22: Releasing the fixing shaft
Use a screwdriver with a $100 \times 3.5 \mathrm{~mm}$ slot width.

- Insert the screwdriver into the lug of the fixing shaft catch.
- Lever out the slide catch.
- Pull out the power supply/CPU module from the fixing shafts.


## Mounting on top-hat rail

The power supply/CPU module can be mounted on a top-hat rail without the display/operating unit.

The fastening catches must be removed in order to mount the device on a fastened top-hat rail.


Figure 23: Removing the spring

- Remove the spring with a screwdriver.


Figure 24: Pulling out and removing the slide catch

- Pull the slide catch out of the guide and remove it.

- Hook the MFD to the top edge of the top-hat rail and hinge into place while pressing down slightly. Press down lightly on both the device and the top-hat rail until the unit snaps over the lower edge of the top-hat rail.

The MFD will clip into place automatically.

- Check that the device is seated firmly.

The device is mounted vertically on a top-hat rail in the same way.

## Screw mounting

For screw mounting on a mounting plate, fixing brackets must be used that can be fixed to the back of the MFD. The fixing brackets are available as an accessory. The power supply/CPU module can be screwed onto a mounting plate without the display/operating unit.


Figure 25: Inserting a fixing bracket
$\rightarrow \quad \begin{aligned} & \text { Three fixing brackets are sufficient for a device with four } \\ & \text { fixing points. }\end{aligned}$


Figure 26: Screw mounting for the MFD

EASY2..-..: easy600:


Figure 27: Screw mounting for easy

Connecting the expansion unit


Figure 28: Connecting expansion units

## Terminals <br> Tool for cage clamp terminals <br> Slot-head screwdriver, width $3.5 \times 0.6 \mathrm{~mm}$.

Connection cross-sections of the MFD cage clamp terminal cables

- Solid: 0.2 to 4 mm$^{2}$ (AWG 24-12)
- Flexible with ferrule: 0.2 to $2.5 \mathrm{~mm}^{2}$
(AWG 24-12)

Tool for slot-head screws for easy expansion unit
Slot-head screwdriver, width $3.5 \times 0.6 \mathrm{~mm}$, tightening torque 0.6 Nm .

## Connection cross-sections of screw terminal cables

- Solid: 0.2 to $4 \mathrm{~mm}^{2}$ (AWG 22 -12)
- Flexible with ferrule: 0.2 to $2.5 \mathrm{~mm}^{2}$
(AWG 22 -12)

Network cables and plugs If possible use the prefabricated EASY-NT cables (e.g. 30 or $80 \mathrm{~cm})$.

Other cable lengths can be made using the EASY-NT-CAB cable, the EASY-NT-RJ45 plug and the easy-RJ45-TOOL crimping tool.

AWG $24,0.2 \mathrm{~mm}^{2}$ are the largest crimpable cross-sections.
The first and last stations in the network must be provided with an EASY-NT-R bus termination resistor.

## Connecting the power supply

$$
\rightarrow \quad \begin{aligned}
& \text { The required connection data for both MFD-DC, easy-DC } \\
& \text { device types with } 24 \mathrm{~V} \text { DC and MFD-AC, easy-AC with } \\
& \text { standard voltages of } 100 \mathrm{~V} \text { to } 240 \mathrm{VAC} \text { are given in the } \\
& \text { Chapter "Technical data", Page } 409 . \\
& \begin{array}{l}
\text { The MFD-Titan devices run a system test for one second } \\
\text { after the power supply has been switched on. Either RUN } \\
\text { or STOP mode will be activated after this time depending } \\
\text { on the default setting. }
\end{array}
\end{aligned}
$$

MFD-AC power supply


Figure 29: AC power supply on the MFD

## Attention!

A short current surge will be produced when switching on for the first time. Do not switch on AC via Reed contacts since these may burn or melt.

## EASY...-AC-.E expansion units



Figure 30: Power supply on the AC expansion units

## Attention!

A short current surge will be produced when switching on for the first time. Do not switch on easy AC via Reed contacts since these may burn or melt.

## MFD DC power supply



Figure 31: Power supply on the MFD

The MFD power supply/CPU module supplies the necessary power supply to itself, the display, the input/output electronics, the easy-LINK, and optionally the easy-NET.
$\longrightarrow$
The MFD device power supply/CPU module is protected against reverse polarity. Ensure the correct polarity of the terminals to ensure that the MFD functions correctly.

## EASY...-DC-.E DC expansion units



Figure 32: Power supply on the DC expansion units

easy $D C$ is protected against polarity reversal. To ensure that easy works correctly, ensure that the polarity of each terminal is correct.

## Cable protection

With easy-AC, easy-DC and the MFD power supply/CPU module, provide cable protection (F1) for at least 1 A (slow).

When easy or the MFD is switched on for the first time, its power supply circuit behaves like a capacitor. Use a suitable device for switching on the power supply and do not use any reed relay contacts or proximity switches.

## Connecting the inputs

easy or MFD inputs switch electronically. Once you have connected a contact via an input terminal, you can reuse it as a contact in your MFD circuit diagram as often as you like.


Figure 33: Connecting the inputs

Connect contacts such as pushbutton actuators or switches to easy or MFD input terminals.

## Connecting the AC inputs



## Caution!

Connect up the AC inputs in accordance with the safety requirements of the VDE, IEC, UL and CSA with the same phase conductor that provides the power supply.
Otherwise easy will not detect the switching level and may be damaged or destroyed by overvoltage.

MFD-AC basic unit


Figure 34: Connecting the inputs

今

## Warning!

The AC inputs must only be used with MFD-AC-CP8... devices. Other devices may be destroyed.

## AC expansion device



Figure 35: Inputs on the EASY...-AC-.E expansion device

Connect the inputs, for example, to pushbutton actuators, switches or relay/contactor contacts.

Input signal voltage range

- OFF signal: 0 to 40 V
- ON signal: 79 to 264 V

Input current

- 11 to $1120.5 \mathrm{~mA} / 0.2 \mathrm{~mA}$ at $230 \mathrm{~V} / 115 \mathrm{~V}$
- R1 to R12
$0.5 \mathrm{~mA} / 0.25 \mathrm{~mA}$ at $230 \mathrm{~V} / 115 \mathrm{~V}$


## Cable lengths

Severe interference can cause a "1" signal on the inputs without a proper signal being applied. Observe therefore the following maximum cable lengths:

- I1 to I12 and
- R1 to R12: 40 m without additional circuit

The following applies to expansion units:
With longer cables, connect a diode (e.g. 1 N 4007 ) for 1 A , minimum 1000 V reverse voltage, in series to the easy input.

Ensure that the diode is pointing towards the input as shown in the circuit diagram, otherwise easy will not detect the 1 state.


Figure 36: easy-AC with a diode on the inputs

Two-wire proximity switches have a residual current with the " 0 " state. If this residual current is too high, the easy input may detect a " 1 " signal.

If inputs with a higher input current are required, an additional input circuit must be used.

## Increasing the input current

The following input circuit can be used in order to prevent interference and also when using two-wire proximity switches:


Figure 37: Increasing the input current

## $\rightarrow$ <br> When using a 100 nF capacitor, the drop-out time of the input increases by 80 (66.6) ms at $50(60) \mathrm{Hz}$.

A resistor can be connected in series with the circuit shown in order to restrict the inrush current.


Figure 38: Limitation of the inrush current with a resistor

Complete devices for increasing the input current are available under the type reference EASY256- HCl .


Figure 39: easy600 with EASY256-HCI
$\rightarrow$
The increased capacitance increases the drop-out time by approx. 40 ms .

## Connecting MFD-DC inputs

Use input terminals I1 to I12 to connect pushbutton actuators, switches or 3 or 4 -wire proximity switches. Given the high residual current, do not use 2-wire proximity switches.

Input signal voltage range

- I1 to I6, I9, I10
- OFF signal: 0 to 5 V
- ON signal: 15 V to 28.8 V
- I7, I8, I11, I12
- OFF signal: < 8 V
- 0 N signal: $>8 \mathrm{~V}$

Input current

- 11 to I6, I9, I10, R1 to R12: 3.3 mA at 24 V
- I7, I8, I11, I12: 2.2 mA at 24 V


Figure 40: MFD-DC
$\rightarrow \quad \begin{aligned} & \text { The digital inputs must have the same voltage as the } \\ & \text { power supply of the MFD. }\end{aligned}$


Figure 41: EASY...-DC-.E

## Connecting analog inputs

Inputs $17, I 8, I 11$ and $I 12$ can also be used to connect analog voltages ranging from 0 V to 10 V .

The following applies:

- 17 = IA01
- 18 = IA02
- 111 = IA03
- 112 = IA04

The resolution is 10 -bit $=0$ to 1023 .

## Caution!

Analog signals are more sensitive to interference than digital signals. Consequently, more care must be taken when laying and connecting the signal lines. Incorrect switching states may occur if they are not connected correctly.

- Use shielded twisted pair cables to prevent interference with the analog signals.
- For short cable lengths, ground the shield at both ends using a large contact area. If the cable length exceeds 30 m or so, grounding at both ends can result in equalisation currents between the two grounding points and thus in the interference of analog signals. In this case, only ground the cable at one end.
- Do not lay signal lines parallel to power cables.
- Connect inductive loads to be switched via the MFD outputs to a separate power feed, or use a suppressor circuit for motors and valves. If loads such as motors, solenoid valves or contactors are operated with MFD via the same power feed, switching may give rise to interference on the analog input signals.

The following circuits contain examples of applications for analog value processing.
> $\rightarrow$
> Ensure that the reference potential is connected. Connect the 0 V of the power supply unit for the different setpoint potentiometers and sensors shown in the examples to the 0 V terminal of the MFD power feed.

## Setpoint potentiometer



Figure 42: Setpoint potentiometer with upstream resistor
Use a potentiometer with a resistance of $\leqq 1 \mathrm{k} \Omega$, e.g. $1 \mathrm{k} \Omega, 0.25 \mathrm{~W}$.

Temperature sensor, brightness sensor, 20 mA sensor


Figure 43: Temperature sensor, brightness sensor, 20 mA sensor

4 to $20 \mathrm{~mA}(0$ to 20 mA ) sensors can be connected easily without any problem using an external $500 \Omega$ resistor.

The following values apply:

- $4 \mathrm{~mA}=1.9 \mathrm{~V}$
- $10 \mathrm{~mA}=4.8 \mathrm{~V}$
- $20 \mathrm{~mA}=9.5 \mathrm{~V}$
(according to $U=R \times I=478 \Omega \times 10 \mathrm{~mA} \sim 4.8 \mathrm{~V}$ )


## Connecting high-speed counters and frequency generators

High-speed counter signals on the MFD-Titan can be counted correctly on inputs I1 to 14 independently of the cycle time.


Figure 44: High-speed counter, frequency generator

## Connecting incremental encoders

Inputs I1, I2 and I3, I4 on the MFD-Titan can each be used for the high-speed counting of an incremental encoder independently of the cycle time. The incremental encoder must generate two 24 V DC square wave signals with a $90^{\circ}$ phase shift between them.


Figure 45: Connecting incremental encoders

Connecting the outputs
The Q... outputs function inside MFD as isolated contacts.


Figure 46: Output "Q"
The respective relay coils are actuated in the MFD circuit diagram via the output relays Q 01 to Q 04 or S 01 to S 06 ( S 08 ). You can use the signal states of the output relays as make or break contacts in the MFD circuit diagram for additional switching conditions.

The relay or transistor outputs are used to switch loads such as fluorescent tubes, filament bulbs, contactors, relays or motors. Check the technical thresholds and output data before installing such devices (see $\rightarrow$ chapter "Technical data", from Page 409).

Connecting relay outputs MFD-R..


Figure 47: MFD-R.. relay outputs

EASY6.....RE..


Figure 48: EASY6..-..-RE.. relay outputs

## EASY2..-RE



Figure 49: EASY2..-..-RE.. relay outputs
Unlike the inputs, the MFD-R.., EASY6..-..RE relay outputs can be connected to different lines.

Do not exceed the maximum voltage of 250 V AC on a relay contact. If the voltage exceeds this threshold, flashover may occur at the contact, resulting in damage to the device or a connected load.

Connecting transistor MFD-T.. outputs


Figure 50: MFD-T.. transistor outputs

## EASY6..-DC-TE



Figure 51: EASY6..-DC-TE transistor outputs

## Parallel connection:

Up to four outputs can be connected in parallel in order to increase the power. The output current will increase in this case to a maximum of 2 A .


## Caution!

Outputs may only be connected in parallel within a group (Q1 to Q4 or Q5 to Q8, S1 to S4 or S5 to S8), such as Q1 and Q3 or Q5, Q7 and Q8. Outputs connected in parallel must be switched at the same time.


## Caution!

Please note the following when switching off inductive loads:
Suppressed inductive loads cause less interference in the entire electrical system. For optimum suppression the suppressor circuits are best connected directly in the proximity of the inductive load.

If inductive loads are not suppressed, the following applies: Several inductive loads should not be switched off simultaneously to avoid overheating the driver blocks in the worst possible case. If in the event of an emergency stop the +24 V DC power supply is to be switched off by means of a contact, and if this would mean switching off more than one controlled output with an inductive load, then you must provide suppressor circuits for these loads $(\rightarrow$ following diagrams).


Figure 52: Inductivity with suppressor circuit

## Behaviour with short-circuit/overload

Should a short circuit or overload occur on a transistor output, this output will switch off. The output will switch on up to maximum temperature after the cooling time has elapsed. This time depends on the ambient temperature and the current involved. If the fault condition persists, the output will keep switching off and on until the fault is corrected or until the power supply is switched off $(\rightarrow$ Section "Monitoring of short-circuit/overload with EASY..-D.-T..", Page 395).

Connecting analog outputs

MFD-RA.. and MFD-TA.. each have an analog output QA 01, 0 V to 10 V DC, 10 bit resolution ( 0 to 1023). The analog output allows you to control servo valves and other final controlling elements.


## Caution!

Analog signals are more sensitive to interference than digital signals. Consequently, more care must be taken when laying and connecting the signal lines. Incorrect switching states may occur if they are not connected correctly.

## Connecting servo valves



Figure 53: Connecting servo valves

Setpoint entry for a drive


Figure 54: Setpoint entry for a drive

Connecting the NET network

MFD-Titan with network connection (MFD-CP.-NT) can be used for creating the NET network. Up to eight devices can be connected to this network. Further information can be found in the Chapter "easy-NET Network, COM-LINK Serial Connection", Page 335.

## Accessories

Connection plug:
8-pole RJ45, EASY-NT-RJ45

## Connection assignment of the RJ45 socket on the device



Figure 55: RJ45 socket

## Connection cable:

4-wire, twisted pair; $\rightarrow$ chapter "Technical data", Page 428


Figure 56: Connection assignment
ECAN_H data cable, pin 1, cable pair A
ECAN_L data cable, pin 2, cable pair A
Ground cable GND, pin 3, cable pair B
Select cable SEL_IN, pin 4, cable pair B

Minimum operation with easy-NET functions with the cables ECAN_H, ECAN_L and GND. The SEL_IN cable is only used for automatic addressing.

Table 5: Prefabricated cables, RJ45 plug on both ends

| Cable length <br> $\mathbf{c m}$ | Type designation |
| :--- | :--- |
| 30 | EASY-NT-30 |
| 80 | EASY-NT-80 |
| 150 | EASY-NT-150 |

Material for self-manufactured cables
$100 \mathrm{~m} 4 \times 0.18 \mathrm{~mm}^{2}$ : EASY-NT-CAB
Required crimping tool for RJ45 plug: EASY-RJ45-TOOL

## Bus termination resistor

The first and last stations in the network must be provided with a bus termination resistor.

- Value: $124 \Omega$
- Termination connector: EASY-NT-R


## Cable length and cross-sections

For correct operation of the network the cable lengths, crosssections and cable resistances must correspond to the following table.

| Cable length <br> $\mathbf{m}$ | Cable resistance <br> $\mathbf{m} \Omega / \mathbf{m}$ | Cross-section <br> $\mathbf{m m}^{2}$ |
| :--- | :--- | :--- |
| up to 40 $\leqq 140$ 0.13 AWG <br> up to 175 $\leqq 70$ 0.25 to 0.34 26 <br> up to 250 $\leqq 60$ 0.34 to 0.5 $22,21,20$ <br> up to 400 $\leqq 40$ 0.5 to 0.6 20,19 <br> up to 600 $\leqq 26$ 0.75 to 0.8 18 <br> up to 1000 $\leqq 16$ 1.5 16 $\mathbf{l}$ |  |  |

The surge impedance of the cables used must be $120 \Omega$.
$\rightarrow$
With cables $>500 \mathrm{~m}$ it may be feasible to install a fibre optic run.

## Calculating the cable length with known cable resistance

If the resistance of the cable per unit of length is known (resistance per unit length $R^{\prime}$ in $\Omega / \mathrm{m}$ ), the entire cable resistance $R_{\mathrm{L}}$ must not exceed the following values. $R_{\mathrm{L}}$ depends on the selected baud rates:

| Baud rate <br> KBaud | Cable resistance $\mathrm{R}_{\mathrm{L}}$ |
| :--- | :--- |
| 10 to 125 | $\leqq 30$ |
| 250 | $\leqq 25$ |
| 500 | $\leqq 12$ |
| 1000 |  |

$I_{\text {max }}=$ maximum cable length in m
$R_{\mathrm{L}}=$ Total cable resistance in $\Omega$
$R^{\prime}=$ Cable resistance per unit length in $\Omega / \mathrm{m}$
$l_{\text {max }}=\frac{R_{L}}{R^{\prime}}$

## Calculating cross-section with known cable lengths

The minimum cross-section is determined for the known maximum extent of the network.
$l \quad=$ cable length in m
$S_{\text {min }}=$ minimum cable cross-section in $\mathrm{mm}^{2}$
$\rho_{\mathrm{cu}}=$ resistivity of copper, if not otherwise stated $0.018 \Omega \mathrm{~mm}^{2} / \mathrm{m}$
$S_{\text {min }}=\frac{l \times \rho_{\mathrm{cu}}}{12.4}$
$\rightarrow \quad \begin{aligned} & \text { If the result of the calculation does not yield a standard } \\ & \text { cross-section, the next larger cross-section is used. }\end{aligned}$

## Calculating length with known cable cross-section

 The maximum cable lengths are calculated for a known conductor cross-section$l_{\text {max }}=$ cable length in m
$S=$ minimum cable cross-section in $\mathrm{mm}^{2}$
$\rho_{\mathrm{cu}}=$ resistivity of copper, if not otherwise stated $0.018 \Omega \mathrm{~mm}^{2} / \mathrm{m}$
$l_{\text {max }}=\frac{S \times 12.4}{\rho_{\mathrm{cu}}}$

## Plugging and unplugging network cables

MFD-Titan is provided with two RJ45 network sockets.
The socket 1 in the first station is for the bus terminating resistor. For other stations, socket 1 is used for plugging in the incoming cable. Socket 2 is used for the outgoing cable or for the bus termination resistor on the last physical station in the network.


Figure 57: Bus termination resistors
(1) First station on the NET network
(2) Bus termination resistor
(3) Last station on the NET network
$\square$ Physical location, place
$\bigcirc$ Station number
Both RJ45 interfaces are visible after the cover plate has been removed.

When a cable is plugged in, the mechanical connection must be audible (click) and visible 1 .

Before a plug or cable is removed, the mechanical locking feature must be undone 22, 3.


Figure 58: Plugging and unplugging cables

Connecting the serial interface

The MFD power supply/CPU module is provided with a multifunction interface. This can be used to set up point-to-point communication between different devices. The interface is also used for connecting EASY-SOFT-PRO.

The following device configurations are possible:

- MFD with MFD,
- MFD with easy800 (from device version 04).

The serial interface must be implemented using special cables.

The standard MFD-800-CAB cable is 2 m in length.
$\rightarrow$
The MFD-800-CAB cable must not be lengthened in order ensure compliance with EMC requirements.


Figure 59: Fitting/removing the interface cover

- Remove the interface cover or other plugs from the interface.
- Fit the connectors in the devices.


Figure 60: Fitting the connection plug
$\rightarrow \quad$ It must be ensured in all circumstances that the connector with the marking POW-Side is fitted in the interface of the MFD device. The serial interface only functions if the MFD device is providing the power feed required for the interface cable.


Figure 61: Point-to-point serial interface

Expanding inputs/outputs You can add expansion units to all MFD types with an easy LINK connection in order to increase the number of inputs and outputs:

| Expandable easy basic units | Expansion units |  |
| :---: | :---: | :---: |
| MFD-CP8-.. | EASY618-..-RE | - 12 AC inputs, <br> - 6 relay outputs |
|  | EASY620-..-TE | - 12 DC inputs, <br> - 8 transistor outputs |
|  | EASY202-RE | 2 relay outputs, common1) |
|  | Special expansion units for connecting to other bus systems are shown in the latest product catalogue. |  |

1) Common supply for multiple outputs

## Local expansion

Local expansion units are fitted directly next to the power supply/CPU module with an easy-LINK connection.

Connect the easy expansion unit via the easy-LINK-DS plug connector.

> EASY-LINK-DS


Figure 62: Connecting local expansion units with MFD-CP8..

$\triangle$
The following electrical separation is implemented between the power supply/CPU module of the MFD device and the expansion unit (separation always in local connection of expansion unit)

- Simple isolation 400 V AC (+10 \%)
- Safe isolation 240 V AC (+10 \%)

Units may be destroyed if the value $400 \mathrm{~V} \mathrm{AC}+10 \%$ is exceeded, and may cause the malfunction of the entire system or machine!
$\rightarrow$
MFD power supply/CPU modules and expansion units can be fed by different DC power supplies.

## Remote expansion

Remote expansion units can be installed and run up to 30 m away from the basic unit.


## Warning!

The two-wire or multiple-wire cable between the devices must adhere to the insulation voltage requirement which is stipulated for the installation environment. Otherwise, a fault (ground fault, short-circuit) may lead to the destruction of the units or injury to persons.

A cable such as NYM-0 with a rated operational voltage of $U_{e}=300 / 500 \mathrm{~V}$ AC is normally sufficient.


Figure 63: Connecting remote expansion units to the MFD-Titan
$\longrightarrow$
Terminals E+ and E- of the EASY200-EASY are protected against short-circuits and polarity reversal.
Functionality is only ensured if $\mathrm{E}+$ is connected with $\mathrm{E}+$ and E - with E -.

## 3 Commissioning

Switching on Before startup check whether the power supply, inputs, outputs, the serial interface and the easy-NET connection are properly connected:

- 24 V DC version:
- Terminal +24 V: +24 V voltage
- Terminal 0 V : 0 V voltage
- Terminals I1 to I12, R1 to R12:

Actuation via +24 V

- 230 V AC version
- Terminal L: Phase conductor L
- Terminal N: Neutral conductor N
- Terminals R1 to R12:

Actuation via phase conductor L
If you have already integrated devices into a system, secure any parts of the system connected to the working area to prevent access and ensure that no-one can be injured if, for example, motors start up unexpectedly.

Setting the menu language

## ENGLIEH

DEUTEM FFHNEIS EFPHOL

When you switch on MFD for the first time, you will be asked to select the menu language.

- Use the cursor buttons $\wedge$ or $\vee$ to select the language required.
- English
- German
- French
- Spanish
- Italian
- Portuguese
- Dutch
- Swedish
- Polish
- Turkish
- Press OK to confirm your choice and press ESC to exit the menu.
easy will then switch to the Status display.


You can change the language setting at a later time, if you wish, see $\rightarrow$ Section "Changing the menu language", Page 366.

If you do not set the language, MFD will display this menu every time you switch on and wait for you to select a language.

MFD operating modes MFD operating modes - RUN, STOP and TERMINAL MODE.
In RUN mode the MFD continuously processes a stored program until you select STOP, disconnect the power supply or switch to TERMINAL MODE. The program, parameters and the MFD settings are retained in the event of a power failure. All you will have to do is reset the real-time clock after the back-up time has elapsed. Circuit diagram entry is only possible in STOP mode.


## Caution!

In RUN mode, the MFD will immediately run the program saved in the unit when the power supply is switched on. This will not happen if STOP or TERMINAL mode was set as startup mode. In RUN mode outputs are activated according to the switch logic involved.

The following applies to devices without display/operating unit:

- Memory card containing a valid circuit diagram must be fitted.
- Device must be switched on.

If the device has no program, the program stored on the memory card is loaded automatically and the device immediately starts running the program in RUN mode.

Creating your first circuit The following single line diagram takes you step by step diagram through wiring up your first circuit diagram. In this way you will learn all the rules, quickly enabling you to use MFD for your own projects.

As with conventional wiring, you use contacts and relays in the MFD diagram. With MFD, however, you no longer have to connect up components individually. At the push of a few buttons, the MFD circuit diagram produces all the wiring required. All you have to do is then connect any switches, sensors, lamps or contactors you wish to use.


Figure 64: Lamp controller with relays

In the following example, MFD carries out all the wiring and performs the tasks of the circuit diagram shown below.


Figure 65: Lamp controller with MFD

## Starting point Status display


$\rightarrow$

## WFTUTT MTMFHM FUNETION FELHVE

The examples were written without the use of expansion units. If an expansion unit is connected, the Status display will first show the status of the basic unit and then the status of the expansion unit before showing the first selection menu.

Press OK to switch to the main menu.
Press OK to switch to the next menu level, and press ESC to move one level back.

OK has two other functions:

- Press OK to save modified settings.
- In the circuit diagram, you can also press OK to insert and modify contacts and relay coils.

In this case MFD must be in STOP mode.
When you switch on MFD, it opens the Status display immediately to show the switching state of the inputs and outputs. It also indicates whether the MFD is already running a program. Note: If another display is visible, a visualization screen is shown.

- Press OK $2 \times$ to enter the circuit diagram display via menu items PROGRAM... $\rightarrow$ PROGRAM. This is where you will create the circuit diagram.


## Circuit diagram display



The circuit diagram display is currently empty. The cursor flashes at the top left, which is where you will start to create your diagram.

The location of the cursor is indicated in the status line. L: = Rung (line), C: = Contact or coil (contact), B: = Free memory available in bytes. Start value 7944, with the first three rungs already generated.

The MFD-Titan circuit diagram supports 4 contacts and one coil in series. The MFD-Titan display can display 6 circuit diagram contact fields.

Use the $\wedge \vee<>$ cursor buttons to move the cursor over the invisible circuit diagram grid.

The first four columns are contact fields, the fifth column is a coil field. Each line is a rung. MFD automatically connects the contact to the power supply.


L: 1 L:1 E:7944
Figure 66: Circuit diagram with inputs I1, I2 and output Q1
Now try to wire up the following MFD diagram.
Switches $S 1$ and $S 2$ are at the input. III and $\mathbb{I T}$ are the contacts for the input terminals. Relay K1 is represented by the relay coil W. The symbol identifies the coil's function, in this case a relay coil acting as a contactor. WI is one of the MFD output relays.

## From the first contact to the output coil

With MFD, you work from the input to the output. The first input contact is IVI.

| IUI |
| :--- |
| L: I E: 1 E:7944 |

- Press OK.

MFD proposes the first contact I\|I at the cursor position.
II flashes and can be changed, for example, to a F for a pushbutton input using the cursor buttons $\wedge$ or $\vee$. However, nothing needs to be changed at this point.


- Press OK $2 \times$, to move the cursor across the $\$ 1$ to the second contact field.
You could also move the cursor to the next contact field using the cursor button.



## - Press OK.

Again, MFD inserts a contact I\|I at the cursor position. Change the contact number to IIW, so that break contact S2 can be connected to input terminal I 2 .

- Press $\mathbf{O K}$ so that the cursor jumps to the next position and press cursor button $\wedge$ or $\vee$ to change the number to $\mathbb{\|} \mathrm{Z}$.
$\rightarrow \quad \begin{aligned} & \text { You can press DEL to delete a contact at the cursor } \\ & \text { position. }\end{aligned}$

-I ||
- Press OK to move the cursor to the third contact field.

You do not need a third relay contact, so you can now wire the contacts directly up to the coil field.

## Wiring

MFD displays a small arrow $u^{\prime \prime}$ in the circuit diagram when creating the wiring.

Press ALT to activate the wiring arrow cursor and use the cursor buttons $\wedge \vee<>$ to move it.


ALT also has two other functions depending on the cursor position:

- In the left contact field, you can press ALT to insert a new empty rung.
- The contact under the cursor can be changed between a make and break contact by pressing the ALT button.


L: 1 (w:1 E: 1944

The wiring arrow works between contacts and relays. When you move the arrow onto a contact or relay coil, it changes back to the cursor and can be reactivated with ALT if required.

MFD automatically wires adjacent contacts in a rung up to the coil.

- Press ALT to wire the cursor from III through to the coil field.


## -I |2

The cursor changes into a flashing wiring arrow and automatically jumps to the next possible wiring position.

- Press the cursor button >. Contact II I. will be connected up to the coil field.


## $\rightarrow$

You can use DEL to erase a connection at the cursor or arrow position. Where connections intersect, the vertical connections are deleted first, then, if you press DEL again, the horizontal connections are deleted.
－Press the cursor button＞again．
The cursor will move to the coil field．


## －Press OK．

MFD inserts the relay coil $\mathbb{Q}$ ．The specified coil function I．and the output relay $\mathbb{Q}$ I are correct and do not have to be changed．

Your first working MFD circuit diagram now looks like this：

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

Figure 67：Your first circuit diagram
$\square=$ visible area
－Press ESC to leave the circuit diagram display． The SAVE menu appears．


Figure 68：SAVE menu

$$
=\text { visible area }
$$

－Press the OK button．
The circuit diagram is stored．
Once you have connected pushbutton actuators S1 and S2， you can test your circuit diagram straight away．

## Testing the circuit diagram

## FPOUMN. . <br> ETOF , VIU <br> FAFHPNTES <br> ET WLOMK...

- Switch to the main menu and select the STOP RUN menu option.
With a tick at RUN or STOP you switch to the RUN or STOP operating modes.

MFD runs in the mode indicated by the tick.

- Press the OK button. MFD will change to RUN mode.

The mode assigned the tick is always active.
The Status display shows the current mode and the switching states of the inputs and outputs.

- Change to the Status display and press pushbutton actuator S 1 .

The contacts for inputs I 1 and I 2 are activated and relay Q1 picks up. This is indicated on the numbers which are displayed.

## Power flow display

MFD allows you to check rungs in RUN mode. This means that you can check your circuit diagram via the built-in power flow display while it is being processed by the MFD.

Change to the Circuit diagram display and press pushbutton actuator S1.
The relay picks up. MFD shows the power flow.


Figure 69: Power flow display: Inputs I1 and I2 are closed, relay Q1 has picked up
= visible area

- Press pushbutton actuator S2, that has been connected as a break contact.
The rung is interrupted and relay Q1 drops out.


Figure 70: Power flow display: Input I1 is closed, input I2 is open, relay Q1 has dropped out
$\square=$ visible area

- Press ESC to return to the Status display.

With MFD you can test parts of a circuit diagram before it is entirely completed.

MFD simply ignores any incomplete wiring that is not yet working and only runs the finished wiring.

## Power flow display with Zoom function

MFD enables you to check the following at a glance:

- all four contacts plus one coil in series
- and 3 rungs
- Change to the Circuit diagram display and press the ALT button. Press pushbutton actuator S1.


Figure 71: Power flow display in Zoom function: Input I 1 and I 2 are closed, relay Q1 picked up

…] Contact opened, coil dropped out

- Press pushbutton actuator $S 2$, that has been connected as a break contact.

The rung is interrupted and relay Q1 drops out.


Use the cursor buttons $\wedge \vee<>$ to move between the contacts or coil.

- Press the cursor button >.


The cursor moves to the second contact.

- Press the ALT button. The display changes to display status with contact and/or coil designation.


Figure 72: Power flow display: Input I1 is closed, input I2 is open, relay Q1 has dropped out
$\square=$ visible area

## Deleting the circuit diagram

- Switch the MFD to STOP mode.

|  | MFD must be in STOP mode in order to extend, delete or modify the circuit diagram. |
| :---: | :---: |
|  | Use PROGRAM ... to switch from the main menu to the next menu level. |
| FFOmFM. | - Select DELETE PROGRAM |
| OELETE PROWM | The MFD will display the prompt DELETE? |
|  | Press OK to delete the program or ESC to cancel. |

## Fast circuit diagram entry

You can create a circuit diagram in several ways: The first option is to enter the elements in the circuit and then to wire all the elements together. The other option is to use the enhanced operator guidance of the MFD and create the circuit diagram in one go, from the first contact through to the last coil.

If you use the first option, you will have to select some of the elements in order to create and connect up your circuit diagram.

The second, faster option is what you learned in the example. In this case you create the entire rung from left to right.

## Configuring an easy-NET network

If you want to work with the easy-NET network and communicate with several stations, the network must be configured first.

Proceed as follows:

- Connect all network stations. easy-NET socket $2 \uparrow$ to easy-NET socket $1 \downarrow$.
- The first station 1 (socket $1 \downarrow$ ) and the last station (socket $2 \uparrow$ ) must be provided with a network termination resistor (1).
- Connect all stations to the power supply.


Figure 73: Example topology with two easy-NET stations
(1) Network termination resistor
$\square$ Physical location
$\checkmark$ Station number

- Switch on the power supply on all stations.
- Ensure that all stations have a power supply. The POW LED must light up or flash. It is only possible to configure the stations which have an active power supply.
- Proceed to the first physical station (Location 1). This station has the termination resistor inserted on socket 1.
$\rightarrow \quad$ The following tasks are only possible in STOP mode.


## Entering the network station number

- Simultaneously press the DEL and ALT buttons while easy shows the Status display.

```
EECUFITY.
SYSTEN.
MENU LFNGUAGE Codfigurator. .
```



The NET menu appears.

- Press the OK button.


## NET <br> FFPMPETEFS. . <br> STATIONS GOMFIGUPE



|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

The System menu appears

- Press the $\mathbf{O K}$ button.
- Press the OK button.
- Press the OK button.

Select the CONFIGURATOR menu option.

The NET PARAMETERS... menu appears.

- Press the $\mathbf{O K}$ button and select the station number with $\wedge$ and $\vee$. In this case the station number (NET-ID) "01".
- Exit the NET PARAMETERS menu with ESC.

The station designated station number 1 is the active station. For this reason the REMOTE RUN and REMOTE IO functions are not available.

## Entering network stations

Only the network station at physical location 1 with station number 1 has a station list.
$\rightarrow$
The left-hand column is the physical location. You can only assign a physical location to unused station numbers. Physical location 1 is permanently assigned to station number 1.

- Use the $\wedge$ and $\vee$ cursor buttons to select the STATION menu and press the OK button.
- Proceed to the station with physical address 2.

- Select the required physical location with the $\wedge$ and $\vee$ cursor buttons. Press the OK button.
Use cursor buttons $\wedge$ and $\vee$ to select station number 2 .
Press the $\mathbf{O K}$ button.
At physical location 2, the station has been assigned station address 2.

Press ESC to return to the STATIONS menu item.

## Configuring an easy-NET network

The easy-NET network can only be configured from station 1 .
Requirement:
All stations are correctly connected to the network and the termination resistors have been connected.

All stations have a power supply and are in STOP mode. The POW LED is permanently lit. The NET LED is permanently lit.

If the connected stations are configured, all stations automatically switch to the STOP mode.

## NET <br> FARHMETEF: <br> STATIONS... TONFIGUPE

TOWFIEUEE

## OONFIGURTION <br> IN <br> Frogess.

- Proceed to the CONFIGURE menu item and press the OK button.

You will be asked to acknowledge whether you want to configure the system.

- Press the OK button.

The message on the left appears:
All NET LEDs on the stations which are assigned station numbers higher than $1(2$ to 8$)$ switch to the OFF state of easy-NET.

As soon as the configuration has been successfully completed, the NET LEDs on all stations flash. The easy-NET network is ready for operation.

An error message will appear if a station is assigned a station address which does not correspond to the physical location in the station list.

EFR: ID-MONFLIT
CONFIGURHTION GONFIEURATION ?

If you want to overwrite the station address press the OK button. The configuration can be aborted by pressing the ESC button.

## Changing the easy-NET network configuration

The configuration of the easy-NET network can be modified at any time at station 1 , physical location 1.

- The NET parameters are modified as described for inputting parameters for the first time.
Station addresses in the STATIONS menu are changed as follows:
- Go to the physical location which is to be modified.
- Press the OK button.


## $\rightarrow$

Existing station numbers can only be modified to free, non-assigned station numbers. If all eight numbers are assigned, all station numbers which are to be modified must be set to zero. Thereafter, all station numbers can be reassigned. (MFD-Titan sets all station numbers to zero which are assigned a physical location behind the leading zero.)

Select the required station number with the $\wedge$ and $\vee$ cursor buttons and confirm your input with the OK button.
Configure all easy-NET stations again using the CONFIGURATION menu.
$\rightarrow$
Further information concerning the easy-NET network topic can be found in Chapter "easy-NET Network, COMLINK Serial Connection", Page 335.

## Displaying the Status display of other stations

On every device with a display, you can display the states of the inputs and outputs of each network station.

| 1112 |  |
| :---: | :---: |
| I NT 1 | F- |
|  |  |
| 101... | FIUN |

- Change to the Status display and press the ESC button.

The cursor changes to the display of the network station NT.. and flashes. The station number is displayed in front of the inputs and outputs.

| 312 |  |
| :---: | :---: |
| I NTE | F- |
| N00 116.42 |  |
| 381.3..6.. | Fud |


| W12. |  |
| :---: | :---: |
| I NTJ | F- |
| N00 015:45 |  |
| 351.3.6. | Fud |

- Change to the number of the required station with the $\wedge$ and $\vee$ cursor buttons.
- Press the OK button.
- If you want to view the state of the inputs and outputs of a local expansion, press the OK button.

If you press the ESC button again or the OK button, the display of the input and output states of the station is terminated.

The station showing the status on its display cannot read its own data from the network.

Example: NT3 flashes on station 3. The inputs and outputs 3I.., $3 R . ., 3 Q$.. and $3 S$.. cannot be displayed.

If the NT3 display is not flashing, the inputs and outputs are shown.

Configuring the interface If you wish to set up point-to-point communication with for the COM-LINK mode another station, this can be done using either the serial interface or easy-NET. The MFD must be provided with a display and operating unit. The connection must be configured for this purpose (Page $350 \rightarrow$ Section "Introduction to COM-LINK").
$\rightarrow \quad$ Ensure that the other station supports the COM-LINK mode.

Proceed as follows:

- Connect both stations together.

Only use original connection cables. The connector marked POW-Side must be plugged into an MFD. The MFD feeds the interface electronics of the connection line at both ends.

- Connect both stations to the power supply.


Figure 74: Example with both COM stations.
The MFD is the active station and the second station is the remote station.

- Switch on the power supply at both stations.
- Ensure that the power supply for both stations is switched on. The POW LED must light up or flash. It is only possible
to configure the stations which have an active power supply.
- Go to the MFD device that is the active station running the serial interface.
$\rightarrow \quad$ The following tasks are only possible in STOP mode.


## Setting up the COM-LINK



## Caution!

The MFD device can either run as a station on the easyNET or as a station in a COM-LINK connection. Do not switch an MFD device running as an easy-NET station to COM-LINK. If this is done on easy-NET in RUN mode, the entire easy-NET network will be deactivated. There will be no further data transfer.

Solution:

- Deactivate the COM-LINK.
- Re-enter the easy-NET address.
- Switch the power supply off and then on again.
- Reconfigure the easy-NET on station 1.
- Simultaneously press the DEL and ALT buttons while easy shows the Status display.

```
EECURITY...
SYSTEM...
NENU LFNGUAGE
TONFIGUPHTOR
```

The System menu appears
Select the CONFIGURATOR menu option.

- Press the OK button.

Select the COM... menu option.

```
NET.
```

Till

- Press the $\vee$ button.

Till

- Press the OK button.


## EFUDRFTE：吅呾 COH－LINK FEFOTE MAFKEF．．．



Select 19200 baud as the baud rate．Badly laid cables may give rise to electromagnetic interference．Select 9600 baud as the baud rate．If this is not satisfactory，the connection cable must be laid in a different location．

EFUDPATE：1月2日GE COHALINK
FEHOTE MFPKER
$\qquad$ －Press the $\wedge$ or $\vee$ button．
－Press the OK button．

Switch on the COM connection．
$\longrightarrow$
The COM－LINK must only be switched at the active station．Two devices with COM－LINK $\quad \sqrt{ }$ switched on cannot communicate with each other．

## EFUDFATE：1420日E

 FEFOTE MFPKEF．．．

The menu BAUDRATE：9600B will appear．The two baud rates are for 9600 or 19200 baud．Select the baud rate that your connection will support．Baud rate selection．
－Press the $\mathbf{O K}$ button．
Select 19200 baud as the baud rate．
－Press the $\vee$ button．
－Press the $\mathbf{O K}$ button．

The tick on the COM－LINK menu item indicates that COM－ LINK has been selected．

No tick means that COM－LINK has not been selected．
The following applies to the active station：
If you wish to run data transfers between the two devices in both directions，you must select the marker range on the active station．

EFUDPFTE：1420日E EOH－LITK FEHOTE MAFKEF：．

Select the REMOTE MARKER menu item．
The following selection will only be displayed if the COM－ LINK menu item has been ticked．

```
FERD:
```



```
WFITE:
```



- Press the OK button.

The data is physically located in the second station, i.e. the remote station.

##  <br> $\rightarrow$

The active station reads and writes data from and to the markers of the remote station. At the same time, the remote station has read and write access to the same marker range.

Ensure that both stations do not have write access to the same markers simultaneously. The last write operation will be the one that is retained.

Example:
READ 1MD2 $\rightarrow$ 1MD2
WRITE 1MD3 $\rightarrow$ 1MD3
The MFD device accesses the markers with station address 1xx... These markers correspond to the local markers MD2 and MD3 in the remote station.

These marker double words contain:
MD2, MW3, MW4, MB5; MB6, MB7, MB8, M33 to M64
MD3, MW5, MW6, MB9, MB19, MB11, MB12; M65 to M96

The following marker ranges can be selected:
1MD1 to 1MD20
This corresponds to the following range in the remote station:

MD1 to MD20

```
FEFD:
    |N[|| | |\0|
WEITE:
```



- Press the OK button.
- Use the $\wedge$ button to select the start of the READ marker range.

```
FEFD:
    |ND|| + NWO|
WPITE:
```



- Use the > button to enter the upper limit of the READ range.
- Use the $\wedge$ button to select the value.
- Confirm the entry with the OK button.

```
EEFD:
```



```
WFITE:
```



```
FEFD:
    |ND\1 + NWE14
WEITE:
```



Use the $\vee$ button to enter the WRITE range.
Enter the WRITE range.

```
RERD:
    |ND|1 + NWE|4
WFITE:
    |NO15 + NHOUT
```

```
EHUDFHTE:142[口E
m0|=LI|k
FEHOTE HFPKER
```

The COM-LINK has now been set. No COM settings are required at the remote station.

- Press ESC to return to the Status display.

|  |
| :---: |
|  |  |
|  |  |

The entry in the second COM line indicates that the COM connection is active.

## Terminal mode

## Terminal mode

The MFD device also supports the TERMINAL MODE operating mode. This allows you to remotely control other devices. This is especially useful if the other device is located in an inaccessible place. Terminal mode can also be used to show the menus and displays of devices that do not have their own display or operating unit. Terminal mode can be used both with the serial interface and in the easy-NET. The serial interface enables you to access a remote device. If you use the easy-NET network, all other network stations can be addressed.

Terminal mode is a separate operating mode like RUN mode. It only functions when a program is not running. For this mode to be active, the MFD must be in STOP mode.

All connected devices must also support Terminal mode.
The following topologies are permissible.

Terminal mode using the point-to-point serial interface


Figure 75: Terminal mode using the point-to-point serial interface

Terminal mode using the easy-NET topology


Figure 76: Terminal mode using the easy-NET topology In the above topology, the physical location is not identical to the station number. The MFD device was connected in the middle of the network line. Terminal mode functions irrespective of the device location and station number.


Figure 77: Terminal mode in easy-NET with two MFD devices The above topology allows two MFD devices to be run in easy-NET Terminal mode. Each MFD device can run with the other devices in Terminal mode.


Figure 78: Terminal mode in easy-NET as well as via two serial interfaces

The above topology is a combination of easy-NET operation and serial interface operation. Bear in mind the access rights of the individual devices in easy-NET and in the corresponding serial interface.


## Caution!

## Data collision!

In order to ensure proper operation, the following conditions must be observed.

The following applies:
If there is more than one MFD device in Terminal mode, each MFD device must access a different easy-NET station.

A device running in Terminal mode must not access any two devices communicating with each other in Terminal mode.

If a PC with EASY-SOFT (-PRO) or an MFD device with a serial interface is in active communication with an easyNET station, this station must not be accessed at the same time in Terminal mode via the easy-NET.

Proceed as follows:
Your easy-NET or your serial interface must be running correctly.

- Press the OK button from the Status Display.

FROMPM... *
STOF / FUN
FARFHETEF: EET ELOEK...

The first menu will appear.
Press the $\wedge$ button.

This will display the TERMINAL MODE menu item.

- Press the OK button.

The START MODE menu item will flash.

- Press the $\wedge$ button.

STATION ID: STRRT MOEE


Station ID:
$0=$ Station on the serial interface
1 = Station 1 easy-NET
2 = Station 2 easy-NET
3 = Station 3 easy-NET
4 = Station 4 easy-NET
5 = Station 5 easy-NET
6 = Station 6 easy-NET
7 = Station 7 easy-NET
$8=$ Station 8 easy-NET

STATION ID: 』 START MODE

Select the second station. This station will control the display and respond to the operating unit.

Press the $\mathbf{O K}$ button.
Select your station.

- Press the $\wedge$ or $\vee$ button.
- Press the OK button.

STATION ID: 』 START HODE

STATION ID:
STRT MOUE

Connection establishment in progress...

Select the START MODE menu option.

- Press the $\vee$ button.
- Press the OK button.

In this case the easy-NET station 2 is connected.

The MFD tries to establish connection to the selected device. The text flashes.

Once the connection is established, the menu appears or the Status display in which the selected device is active.

If the text "Connection establishment in progress..." is displayed for longer than 10 s , the connection to the selected device is faulty. Press ESC to cancel the selection. Rectify the fault. Try to re-establish the connection.

The following applies if the device to be operated is in RUN mode and is displaying a screen:

This screen is not displayed in Terminal mode.

```
The remote
device is in
Graphic mode
```

I 1..4..1明...
I NTE F-

Q 1.4567 Fl [

MFD message: "The remote device is in Graphic mode."

- Press the ALT and ESC button simultaneously.

This will call up the Status display.
The easy-NET station 2 controls the display of the MFD device.

The activation of Terminal mode is indicated by the flashing star at the top right of the Status display.


## Caution!

In Terminal mode, you can operate a device that may be positioned far from your actual location. All access rights that you would also require "locally" are granted to you. It is not always possible to obtain a view of the situation "locally". Use of this operating mode and the execution of any changes to device settings should only be carried out with the utmost caution.

A device with a display and operating unit can also be operated locally. In this case, operation at the device concerned is always faster than operation via Terminal mode. Bear in mind that this may lead to conflicts that may trigger faults or unforeseen events.

In Terminal mode, the MFD device makes its display and operating unit available to the connected device. Only data for the display and the status of the buttons is sent via the connection. This ensures that the local data of the connected device is not destroyed in the event of a communication fault.

Close Terminal mode.

STATION ID: 2 STAT P FODE

Press the * button to close the Terminal mode.


The * button cannot be assigned to other tasks if you wish to use Terminal mode in your application. Use the * button to change from the visualization to the Status display. Otherwise the Terminal mode menu cannot be reached.

Press the * button.
This returns you back to your local device.

STATION ID: 2 STRTT HODE


- Press the ESC button twice.

The Status display of the MFD device is active.
The flashing star at the top right of the display is no longer present.

The display must be initialised again if the CPU was fitted to it under live conditions.

- Press the DEL and ESC button simultaneously. This will reinitialise the display.


## 4 Wiring with MFD-Titan

This chapter describes all the functions available with MFD-Titan.

## MFD-Titan operation Buttons for drawing circuit diagrams and function block usage

Delete rung, contact, relay or empty line in the circuit diagram

## ALT

Toggle between break and make contact Connect contacts and relays
Add rungs
ヘv Change values
Cursor up, down
$<>\quad$ Change position Cursor left, right
Cursor buttons set as P buttons:
$\begin{array}{llll}< & \text { Input P1, } & \text { Input P2 } \\ & \text { Input P3, } & \vee & \text { Input P4 }\end{array}$
Undo setting from previous OK
Exit current display or menu
OK
Change, add contact/relay
Save setting
Terminal mode on/off

## Operating principles

The cursor buttons in the MFD-Titan circuit diagram perform three functions. The current mode is indicated by the appearance of the flashing cursor.

- Move
- Entering
- Connect

In Move mode you can use ヘン < > to move the cursor around the circuit diagram in order to select a rung, contact or relay coil.


Use OK to switch to Entry mode so that you can enter or change a value at the current cursor position. If you press ESC in Entry mode, MFD-Titan will undo the most recent changes.

Press ALT to switch to Connect mode for wiring contacts and relays. Press ALT again to return to Move.

Press ESC to leave the circuit diagram and parameter display.

MFD-Titan performs many of these cursor movements automatically. For example, MFD-Titan switches the cursor to Move mode if no further entries or connections are possible at the selected cursor position.

## Opening the parameter display for function blocks with contacts or coils

If you specify the contact or coil of a function relay type in Entry mode, MFD-Titan automatically switches from the contact number to the function block parameter display when you press OK.

Press > to switch to the next contact or coil field without entering any parameters.

## Program

A program is a sequence of commands which the MFD-Titan executes cyclically in RUN mode. An MFD-Titan program consists of the necessary settings for the device, easy-NET, COM-LINK, password, system settings, a circuit diagram and/or function blocks and/or the visualization screens.

The circuit diagram is that part of the program where the contacts are connected together. In RUN mode a coil is switched on and off in accordance with the current flow and the coil function specified.

## Function blocks

Function blocks are program elements with special functions. Example: timing relays, time switches, arithmetic function blocks. Function blocks are elements provided with or without contacts and coils as required. In RUN mode the function blocks are processed according to the circuit diagram and the results are updated accordingly.

## Examples:

Timing relay $=$ function block with contacts and coils
Time switch $=$ function block with contacts

## Visualization screens

Visualisation screens are the sections of programs containing the display and operator functions.

## Relays

Relays are switching devices which are electronically simulated in MFD-Titan. They actuate their contacts according to their designated function. A relay consists of a coil and at least one contact.

## Contacts

You modify the current flow with the contacts in the MFD-Titan circuit diagram. Contacts such as make contacts carry a 1 signal when closed and 0 when open. Every contact in the MFD-Titan circuit diagram can be defined as either a make contact or a break contact.

## Coils

Coils are the actuating mechanisms of relays．In RUN mode， the results of the wiring are sent to the coils，which switch on or off accordingly．Coils can have seven different coil functions．

Table 6：Usable contacts

| Contact | MFD－Titan display |
| :--- | :--- |
| Make contact，open in release <br> position | $\mathrm{I}, \overline{\mathrm{Q}}, \mathrm{M}, \overline{\mathrm{F}}, \ldots$ <br> Other contacts $\rightarrow$ Table |
| Break contact，closed in release <br> position | $\overline{\mathrm{I}}, \overline{\overline{\mathrm{E}}, \overline{\mathrm{F}}, \overline{\mathrm{F}}, \ldots}$ <br> Other contacts $\rightarrow$ Table |

MFD－Titan works with different contacts，which can be used in any order in the contact fields of the circuit diagram．

Table 7：Contacts

| Contact | Make contact | Break contact | Number | Page |
| :---: | :---: | :---: | :---: | :---: |
| Inputs |  |  |  |  |
| Inputs of a network station ＊$=$ Station address 1 to 8 | 雱I | W | 41．．．12 | 338 |
| COM slave inputs | 1 I | $1 \bar{I}$ | 01．．12 | － |
| MFD－Titan input terminal | I | İ | －1．．．12 | － |
| Cursor button | F | F | －1．．．14 | － |
| Network station expansion input terminal ＊$=$ Station address 1 to 8 | 数 | 黟 | －1．．．12 | 338 |
| Input terminal for expansion unit COM slave | 17 | 17 | 41．．．12 | － |
| Input terminal for expansion unit | F | \％ | 41．．．12 | － |
| Bit inputs via the network <br> ＊$=$ Station address 1 to 8 | 踊N | 政兩 | 41．．．32 | 338 |


| Contact | Make contact | Break contact | Number | Page |
| :---: | :---: | :---: | :---: | :---: |
| Diagnostics inputs |  |  |  |  |
| Expansion network station status ＊$=$ Station address 1 to 8 | 茦I | 需 $\overline{\mathrm{I}}$ | 14 | 397 |
| Network station short－circuit／overload ＊$=$ Station address 1 to 8 | 䍓I | 需 $\overline{\text { I }}$ | 15．．．16 | 395 |
| COM slave expansion unit status | 11 | $1 \bar{I}$ | 14 | － |
| COM slave short－circuit／overload | 1 I | $1 \bar{I}$ | 15．．．16 | － |
| Expansion status | I | $\bar{I}$ | 14 | 397 |
| Short－circuit／overload | I | $\bar{I}$ | 15．．．16 | 395 |
| Short－circuit／overload in expansion network station ＊＝Station address 1 to 8 | 敬 | 䟥 | 15．．．16 | 395 |
| Short－circuit／overload in COM slave expansion | 17 | $1{ }^{2}$ | 15．．．16 | － |
| Short circuit／overload with expansion | F | V | 15．．16 | 395 |
| Outputs |  |  |  |  |
| Deactivate backlight of the MFD display | LE | ［E | 01 | － |
| Red LED of MFD display | LE | LE | 42 | － |
| Green LED of MFD display | LE | LE | ロ3 | － |
| MFD－Titan output MFD network station ＊$=$ Station address 1 to 8 | 踘 | 篤 | －1．．．］ | 338 |
| COM slave output | 10 | 16 | －1．．．］ | － |
| MFD－Titan output | Q | \％ | －1．．．4． | － |
| MFD－Titan output expansion with network station ＊$=$ Station address 1 to 8 | 昷 | 昜 | －1．．．喵 | 338 |
| Output of COM slave expansion | 15 | 15 | 41．．．18 | － |
| MFD－Titan output expansion | 5 | \％ | 41．．．］ | － |
| Bit outputs via the network <br> ＊$=$ Station address 1 to 8 | 淔 | 跉为 | 41．．．32 | 338 |


| Contact | Make contact | Break contact | Number | Page |
| :---: | :---: | :---: | :---: | :---: |
| Other contacts |  |  |  |  |
| Markers | M | M | -1...46 | 131 |
| COM slave marker (REMOTE MARKER) | $1{ }^{1}$ | 1 N | प1..96 | 353 |
| Jump label | : |  | प1...32 | 239 |
| Diagnostics messages | ID | ID | 41...16 | 347 |
| COM slave diagnostics messages | 110 | 1 I | -1...16 | 353 |
| Function blocks |  |  |  |  |
| Analog value comparator function block | A $\times 8$. | A $\times 8$. | $\underset{Z}{x=01 \ldots 3}$ | 160 |
| Function blocks <br> Analog value comparator <br> Value overflow (CARRY) | AXCV | $\overline{\mathrm{H} \times \mathrm{CV}}$ | $\underset{z}{X}=01 \ldots 3$ | 160 |
| Arithmetic value overflow (CARRY) function block | FR XCV | $\overline{\mathrm{F}} \mathrm{X} \mathrm{XCV}$ | $x=01 \ldots 3$ | 163 |
| Zero arithmetic value (zero) function block | FR X ZE | Five $\times$ ZE | $\underset{z}{x=01 \ldots 3}$ | 163 |
| Data block comparator function block, error: number of elements exceeded | ECXE1 | EL X Ef | $\underset{z}{x}=01 \ldots 3$ | 167 |
| Data block comparator function block, error: range overlap | $\mathrm{EC} \times \mathrm{EL}$ | EL X ER | $\underset{z}{x}=01 \ldots 3$ | 167 |
| Data block comparator function block, error: invalid offset | $\mathrm{EC} \times \mathrm{EJ}$ | EL X E: | $\underset{z}{x}=01 \ldots 3$ | 167 |
| Data block comparator function block, comparison result | $\mathrm{EC} \times \mathrm{EQ}$ | EL X EQ | $\underset{z}{X}=01 \ldots 3$ | 174 |
| Data block comparator function block, error: number of elements exceeded | ET X El | ET X Ef | $\underset{z}{X}=01 \ldots 3$ | 174 |


| Contact | Make contact | Break contact | Number | Page |
| :---: | :---: | :---: | :---: | :---: |
| Data block transfer function block, error: range overlap | ET X E2 | ET X E2 | $x=01 \ldots 3$ | 174 |
| Data block transfer function block, error: invalid offset | ET X E\# | ET X EJ | $X=01 \ldots 3$ | 174 |
| Boolean operation function block, value zero | EU X ZE | EO X ZE | $x=01 \ldots 3$ | 185 |
| Counter function block, upper setpoint value exceeded (Overflow) | $\pm \times$ of | Exof | $X=01 \ldots 3$ | 188 |
| Counter function block, lower setpoint value undershot (Fall below) | [ $\times \mathrm{FE}$ | EXFE | $x=01 \ldots 3$ | 188 |
| Counter function block, actual value equal to zero | EXZE | EXZE | $x=01 \ldots 3$ | 188 |
| Counter function block, actual value has exceeded counter range (CARRY) | EXEV | ExCy | $x=01 \ldots 3$ | 188 |
| Frequency counter function block, upper setpoint value exceeded (Overflow) | OF $\times$ OF | [F $\times$ OF | $x_{4}^{x=01 \ldots 0}$ | 195 |
| Frequency counter function block, lower setpoint value undershot (Fall below) | ©F $\times \mathrm{FE}$ | [F X FE | $x_{4}^{x=01 \ldots 0}$ | 195 |
| Frequency counter function block, actual value equal to zero | OF X ZE | CF X ZE | $x_{4}^{x=01 \ldots 0}$ | 195 |
| High-speed counter function block, upper setpoint value exceeded (Overflow) | EH X OF | [H X OF | $x_{4}^{x=01 \ldots 0}$ | 199 |
| High-speed counter function block, lower setpoint value undershot (Fall below) | EH $\times$ FE | EH X FE | $x_{4}^{x=01 \ldots 0}$ | 199 |
| High-speed counter function block, actual value equal to zero | EH X ZE | EH X ZE | $x_{4}^{x=01 \ldots 0}$ | 199 |
| High-speed counter function block, actual value has exceeded counter range (CARRY) | CH X CY | EH X CY | $\underset{4}{x=01 \ldots 0}$ | 199 |


| Contact | Make contact | Break contact | Number | Page |
| :---: | :---: | :---: | :---: | :---: |
| Incremental encoder counter function block, upper setpoint value exceeded (Overflow) | EI X OF | EI $\times$ OF | $x=01 \ldots 0$ | 205 |
| Incremental encoder counter function block, lower setpoint value undershot (Fall below) | EI $\times$ FE | II $\times$ FE | $x=01 \ldots \square$ | 205 |
| Incremental encoder counter function block, actual value equal to zero | EI X ZE | EI X ZE | $x=01 \ldots \square$ | 205 |
| Incremental encoder counter function block, actual value has exceeded counter range (CARRY) | EI XCY | EI XCV | $x=01 \ldots .$ | 205 |
| Comparator function block, less than | EF X LT | TF X LT | $x=01 \ldots 3$ | 210 |
| Comparator function block, equal to | CF X ED | EF X EQ | $\begin{aligned} & x=01 \ldots 3 \\ & z \end{aligned}$ | 210 |
| Comparator function block, greater than | EF X GT | EF X GT | $x=1 \ldots 3$ | 210 |
| Text output function block | [ X 81 | E X 01 | $\begin{aligned} & x=01 \ldots 3 \\ & z \end{aligned}$ | 212 |
| Data function block | DE $\times \mathrm{Qd}$ | [EX $\times 1$ | $x=01 \ldots 3$ a | 213 |
| PID controller, value range of manipulated variable exceeded | [0. X LI | [II X LI | $x=01 \ldots 3$ | 215 |
| Receive a variable from a station (Get) | GT $\times \mathrm{Q}$ | GT X Q1 | $x=11 \ldots 3$ | 215 |
| Seven-day time switch | HWW X Q -1 | HWW X Q 1 | $x=01 \ldots 3$ | 226 |
| Year time switch function block | HY $\mathrm{X} \mathbf{~ Q 1}$ | HV X Q | $x=01 \ldots 3$ | 231 |
| Master reset, sets all outputs and markers to zero state |  | 同 X Q | $x=01 \ldots 3$ | 242 |
| Operating hours counter function block, set time reached | OT $\mathrm{X} \mathrm{Q1}$ | OT $\times 8.1$ | $\underset{4}{x=01 \ldots .1]}$ | 249 |


| Contact | Make contact | Break contact | Number | Page |
| :---: | :---: | :---: | :---: | :---: |
| Operating hours counter, value overflow (CARRY) | 0 TX CY | OT X EY | ${\underset{y}{x}}_{x=01 \ldots 0}$ | 249 |
| Send a variable to the network, enable active Put | FT $\times$ Q 1 | FT X Q 1 | $x=01 \ldots 3$ | 250 |
| Pulse width modulation, error minimum on or off time exceeded | FW X E1 | FWX E | $x=01 \ldots 0$ | 252 |
| Send date and time via the network (easy-NET) function block | 50881 | St 8 81 | $x=01$ | 255 |
| Timing relay function block | T X Q | T X Q | $x=01 \ldots 3$ | 259 |

## Usable relays and function blocks（coils）

MFD－Titan provides various relay types as well as function blocks and their coils for wiring in a circuit diagram．

| Relay／function block | MFD－Titan display | Number | Coil | Parameter |
| :---: | :---: | :---: | :---: | :---: |
| Outputs |  |  |  |  |
| MFD－Titan output relays，network stations（only network master） <br> ＊$=$ Station address 2 to 8 | 数 | －1．．．吅 | $\checkmark$ | － |
| MFD－Titan output relay | Q | －1．．．吅 | $\checkmark$ | － |
| MFD－Titan output relay expansion， network stations（only network master） $\text { * }=\text { Station address } 2 \text { to } 8$ | 紬 | －1．．．吅 | $\checkmark$ | － |
| MFD－Titan expansion output relay | 5 | －1．．．咐 | $\checkmark$ | － |
| Bit outputs $\text { * }=\text { Station address } 1 \text { to } 8$ | ＊ | 41．．．a？ | $\checkmark$ | － |
| General coils |  |  |  |  |
| Markers | M | 01．．．96 | $\checkmark$ | － |
| COM slave marker （REMOTE MARKER） | 1H1 | 01．．．96 | $\checkmark$ | － |
| Jump label |  | 41．．．引a | $\checkmark$ | － |
| Function blocks |  |  |  |  |
| Analog value comparator function block | A | 41．．．a | － | $\checkmark$ |
| Arithmetic function block | FR | －1．．．引a | － | $\checkmark$ |
| Data block comparator，activate | ECX EN | 0132 | $\checkmark$ | $\checkmark$ |
| Transfer data block，trigger coil | ET X T－ | 0132 | $\checkmark$ | $\checkmark$ |
| Boolean operation | Ev | 41．．．a3 | － | $\checkmark$ |
| Counter function block，counter input | C× | $x=01 \ldots 32$ | $\checkmark$ | $\checkmark$ |


| Relay／function block | MFD－Titan display | Number | Coil | Parameter |
| :---: | :---: | :---: | :---: | :---: |
| Counter function block，direction | E×0． | x＝01．．．32 | $\checkmark$ | $\checkmark$ |
| Counter function block，set counter value（Preset） | EXSE | X＝01．．．32 | $\checkmark$ | $\checkmark$ |
| Counter function block，reset counter value | CX FE | x＝01．．．32 | $\checkmark$ | $\checkmark$ |
| Frequency counter function block， activate counter（enable） | OF X EN | $x=01 \ldots . .4$ | $\checkmark$ | $\checkmark$ |
| High－speed counter function block， direction | ［H $\times$［． | $\mathrm{x}=01 \ldots . .14$ | $\checkmark$ | $\checkmark$ |
| High－speed counter function block， activate counter（enable） | EH X EN | $x=01 . . .84$ | $\checkmark$ | $\checkmark$ |
| High－speed counter function block， set counter value（Preset） | EH X SE | $x=01 \ldots .14$ | $\checkmark$ | $\checkmark$ |
| High－speed counter function block， reset counter value | EH X FE | $x=01 \ldots . .44$ | $\checkmark$ | $\checkmark$ |
| Incremental encoder counter function block，set counter value（Preset） | EI X SE | X＝01．．．02 | $\checkmark$ | $\checkmark$ |
| Incremental encoder counter function block，activate counter（enable） | EI X EN | $x=01 \ldots . .10$ | $\checkmark$ | $\checkmark$ |
| Incremental encoder counter function block，reset counter value | EI X FE | X＝01．．．02 | $\checkmark$ | $\checkmark$ |
| Comparator function block | GF | X＝01．．．32 | － | $\checkmark$ |
| Activate text output function block （enable） | ［ X EN | x＝01．．．az | $\checkmark$ | $\checkmark$ |
| Data function block，trigger coil | 区E $\times$ T． | X＝01．．．32 | $\sqrt{ }$ | $\checkmark$ |
| PID controller，activate | ［IC X EN | X＝01．．．32 | $\checkmark$ | $\checkmark$ |
| PID controller，activate P component | DC X EF | X＝01．．．a己 | $\checkmark$ | $\checkmark$ |
| PID controller，activate I component | DL X EI | X＝01．．．32 | $\checkmark$ | $\checkmark$ |
| PID controller，activate D component | DC X ED | X＝01．．．a己 | $\checkmark$ | $\checkmark$ |
| PID controller，accept manual manipulated variable | ［0： X SE | x＝01．．．a己 | $\checkmark$ | $\checkmark$ |
| Activate signal smoothing filter | FT X EN | x＝01．．．32 | $\checkmark$ | $\checkmark$ |


| Relay/function block | MFD-Titan display | Number | Coil | Parameter |
| :---: | :---: | :---: | :---: | :---: |
| Get from network station function block | IT | $\mathrm{X}=01 \ldots 3$ | - | $\checkmark$ |
| Seven-day time switch | HW | X=01...32 | - | $\checkmark$ |
| Year time switch function block | HV | $x=01 \ldots 3{ }^{\text {a }}$ | - | $\checkmark$ |
| Activate value scaling function block | LS X EN | $x=01 \ldots 3{ }^{\text {a }}$ | $\checkmark$ | $\checkmark$ |
| Master reset function block | Hf $\times$ T. | $x=01 \ldots 32$ | $\checkmark$ | $\checkmark$ |
| Activate numerical converter function block | NE $X$ EN | x=0132 | $\checkmark$ | $\checkmark$ |
| Function block operating hours counter, enable | OT X EN | $\mathrm{X}=01 \ldots 4$ | $\sqrt{ }$ | $\checkmark$ |
| Operating hours counter function block, reset | OT X FE | $x=01 \ldots 44$ | $\checkmark$ | $\checkmark$ |
| Send to the network (easy-NET) function block, trigger | FT X T. | $x=01 \ldots 3$ | $\checkmark$ | $\checkmark$ |
| Activate pulse width modulation function block | FUW X EN | $\mathrm{x}=01 . .02$ | $\checkmark$ | $\checkmark$ |
| Send time to the network (easy-NET) function block, trigger | SC $\times$ T. | $\mathrm{x}=01$ | $\checkmark$ | - |
| Activate set cycle time function block | ST X EN | $x=01$ |  |  |
| Timing relay function block, trigger control coil (enable) | T X EN | $\mathrm{X}=01 . .32$ | $\checkmark$ | $\checkmark$ |
| Timing relay function block, stop | TXST | X=01...引 | $\checkmark$ | $\checkmark$ |
| Timing relay function block, reset | TX FE | $x=01 . . .32$ | $\checkmark$ | $\checkmark$ |
| Activate value limitation function block | VE $X$ EN | $\mathrm{X}=01 . .3{ }^{\text {a }}$ | $\checkmark$ | $\checkmark$ |

The switching behaviour of these relays is set by the coil functions and parameters selected.

The options for setting output and marker relays are listed with the description of each coil function.

The function block coil functions and parameters are listed with the description of each function block type.

## Markers, analog operands

Specific markers are available for actively addressing values or inputs/outputs.

Table 8: Markers

| Markers <br> Analog operand | MFD-Titan display | Number | Value range | Access type $\begin{aligned} & r=\text { Read } \\ & w=\text { Write } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Marker 32 bit | 1 H | -1...96 | 32 bit | r, w |
| Marker 16 bit | H.4. | \$1...46 | 16 bit | r, w |
| Marker 8 bit | HE | \$1...46 | 8 bit | r, w |
| Marker 1 bit | 1 | 1...46 | 1 bit | r, w |
| Analog inputs basic unit | If X | $\mathrm{x}=01 . . .84$ | 10 bit | $r$ |
| Analog output | Q ${ }^{\text {P }}$ | $x=01$ | 10 bit | r, w |

When using the COM communication mode, you can make the following data accesses on the slave. Note the REMOTE MARKER SETTING in the following table.

| Markers | MFD-Titan display | Number | Value range | Access type |
| :---: | :---: | :---: | :---: | :---: |
| Analog operand |  |  |  | $\begin{aligned} & r=\text { Read } \\ & w=\text { Write } \end{aligned}$ |
| Marker 32 bit | 110 | -1...2] | 32 bit | r, w |
| Marker 16 bit | 1/WW | -1...4] | 16 bit | r, w |
| Marker 8 bit | 1 NE | -1...嗅 | 8 bit | r, w |
| Marker 1 bit | 1M | 1...96 | 1 bit | r, w |
| Analog inputs basic unit | 1If X | $\mathrm{x}=01 . .04$ | 10 bit | r |
| Analog output | 107 X | $\mathrm{x}=01$ | 10 bit | r |

The following rules apply if you want to use selective binary operands (contacts) from the markers MD, MW, MB:

Table 9: Composition of the markers

| Applies to MD, MW, MB, M | Left $=$ most significant bit, byte, word |  |  | Right = least significant bit, byte, word |
| :---: | :---: | :---: | :---: | :---: |
| 32 bit | MD1 |  |  |  |
| 16 bit | MW2 |  | MW1 |  |
| 8 bit | MB4 | MB3 | MB2 | MB1 |
| 1 bit | M32 to M25 | M24 to M17 | M16 to M9 | M8 to M1 |
| 32 bit | MD2 |  |  |  |
| 16 bit | MW4 |  | MW3 |  |
| 8 bit | MB8 | MB7 | MB6 | MB5 |
| 1 bit | M64 to M57 | M56 to M49 | M48 to M41 | M40 to M33 |
| 32 bit | MD3 |  |  |  |
| 16 bit | MW6 |  | MW5 |  |
| 8 bit | MB12 | MB11 | MB10 | MB9 |
| 1 bit | M96 to M89 | M88 to M81 | M80 to M73 | M72 to M65 |
| 32 bit | MD4 |  |  |  |


| Applies to MD, MW, MB, M | Left $=$ most significant bit, byte, word |  |  | Right $=$ least significant bit, byte, word |
| :---: | :---: | :---: | :---: | :---: |
| 16 bit | MW8 |  | MW7 |  |
| 8 bit | MB16 | MB15 | MB14 | MB13 |
| 32 bit | MD5 |  |  |  |
| 16 bit | MW10 |  | MW9 |  |
| 8 bit | MB20 | MB19 | MB18 | MB17 |
| $\ldots$ |  |  |  |  |
| $\ldots$ |  |  |  |  |
| $\ldots$ |  |  |  |  |
| 32 bit | MD23 |  |  |  |
| 16 bit | MW46 |  | MW45 |  |
| 8 bit | MB92 | MB91 | MB90 | MB89 |
| 32 bit | MD24 |  |  |  |
| 16 bit | MW48 |  | MW47 |  |
| 8 bit | MB96 | MB95 | MB94 | MB93 |
| 32 bit | MD25 |  |  |  |
| 16 bit | MW50 |  | MW49 |  |
| 32 bit | MD26 |  |  |  |
| 16 bit | MW52 |  | MW51 |  |
| ... |  |  |  |  |
| $\ldots$ |  |  |  |  |
| 32 bit | MD48 |  |  |  |
| 16 bit | MW96 |  | MW95 |  |
| 32 bit | MD49 |  |  |  |
| 32 bit | MD50 |  |  |  |
| ... |  |  |  |  |
| 32 bit | MD95 |  |  |  |
| 32 bit | MD96 |  |  |  |

$\rightarrow \quad$ You should only write the markers once.
Marker double words always contain all data formats. When several write accesses to MD, MW, MB or M (within an MD) are made, it is the last write operation that is retained. This also applies if you are writing markers from a visualization screen.

## Number formats

MFD makes computations with a signed 31 bit value.
The value range is:
-2147483648 to +2147483647
With a 31 bit value, the 32 nd bit is the sign bit.
Bit $32=$ state " 0 " means a positive number.
Example:
$00000000000000000000010000010010_{\text {bin }}=$
$412_{\text {hex }}=1042_{\mathrm{dec}}$
Bit $32=1$ means a negative number.
Example:
11111111111111111101110010101110
$\mathrm{bin}=$ FFFFDCAE ${ }_{\text {hex }}=-9042_{\mathrm{dec}}$
$\rightarrow$
The marker byte (MB) and marker word (MW) number formats are unsigned.

## Circuit diagram display

In the MFD-Titan circuit diagram, contacts and coils of relays are connected up from left to right - from the contact to the coil. The circuit diagram is created on a hidden wiring grid containing contact fields, coil fields and rungs. It is then wired up with connections.

- Insert contacts in the four contact fields. The first contact field on the left is automatically connected to the voltage.
- Insert the relay coil to be controlled together with its function and designation in the coil field. The coil designation consists of the coil name, coil number and function block from the function designation. The coil function defines the method of operation of the coil.
- Every line in the circuit diagram forms a rung. With the MFD-Titan up to 256 rungs can be wired in a circuit diagram.

- Connections are used to produce the electrical contact between relay contacts and the coils. They can be created across several rungs. Each point of intersection is a connection.
- The number of free bytes is displayed so that you can recognise how much memory is available for the circuit diagram and function blocks.


## MFD-Titan circuit diagram display

## 

Q \|1.......HYU1Q1
L: 1 E:1 E:7明

For greater legibility, the circuit diagram display of the MFD-Titan shows two contacts per rung or one contact plus a coil in series. A total of 16 characters per rung and three rungs plus the status line can be displayed simultaneously.

You can move between the contact fields with the $\langle>$ cursor buttons. The number of the rung and the contact are displayed in the lower status line.

The circuit diagram display performs two functions:

- In STOP mode it is used to edit the circuit diagram.
- In RUN mode it is used to check the circuit diagram using the Power flow display.


## Saving and loading programs

MFD-Titan provides you with two ways of saving circuit diagrams externally:

- Saving to a memory card.
- Saving on a PC with EASY-SOFT-PRO.

Once they have been saved, programs can be reloaded into MFD-Titan, edited and run.

All program data is saved in MFD-Titan. In the event of a power failure the data will be retained until the next time it is overwritten or deleted.

## Memory card

Each memory card contains a circuit diagram which is inserted into the MFD-Titan interface.

The MFD-Titan behaves in the following manner in accordance with the type and setting.
Requirement:
A valid circuit diagram must be stored on the card.
Variants with display:

- Go to the CARD menu and load the circuit diagram into the unit in STOP mode via CARD $\rightarrow$ DEVICE.
CARD MODE setting $\rightarrow$ page 376.
Variants without display:
If the circuit diagram on the card is different to the circuit diagram in the device, the program from the card is loaded as soon as the power supply is turned on.


## EASY-SOFT-PRO

EASY-SOFT-PRO is a PC program for creating, testing and managing MFD-Titan programs, visualization applications and circuit diagrams.

Completed programs are exchanged between the PC and MFD-Titan via the connection cable. Once you have transferred a circuit diagram, you can start MFD-Titan straight from your PC.

## Working with contacts and relays

In MFD-Titan circuit diagrams, the switches, buttons and relays of conventional circuit diagrams are connected up using input contacts and relay coils.

Conventional circui


MFD-Titan connection
Connect make contact S1 to input terminal II
Connect make contact S2 to input terminal I2
Connect load H1 to output Q1
S1 or S2 switch on H1.

## MFD-Titan circuit diagram:



```
I \a---
```

First specify which input and output terminals you wish to use in your circuit.

The signal states on the input terminals are detected in the circuit diagram with the input contacts I, R* or RN. The outputs are switched in the circuit diagram with the output relays Q, S or SN.

## Entering and changing contacts and relay function coils

## Contacts



An input contact is selected in the MFD-Titan via the contact name and contact number.

Example: input contact


A contact of a function relay is assigned the name of the function block, the number and the contact function.
Example: contact of comparator function block

$\rightarrow \quad \begin{aligned} & \text { A full list of all the contacts and relays is given in the } \\ & \text { overview starting on Page 122. }\end{aligned}$


Values for contacts and coil fields are changed in Entry mode. The value to be changed flashes.
$\rightarrow \quad \begin{aligned} & \text { MFD-Titan proposes the contact III } \\ & \text { when starting entries in an empty field. }\end{aligned}$ when starting entries in an empty field.

- Move the cursor using the buttons < > ヘン to a contact or coil field.
- Press OK to switch to Entry mode.
- Use < II to select the position you wish to change, or press OK to jump to the next position.
Use $\wedge \vee$ to modify the value at the position.
MFD-Titan will leave Entry mode when you press < > or OK to leave a contact field or coil field.



## Deleting contacts and coils

－Move the cursor using the buttons $\rangle$ ヘン to a contact or coil field．
－Press DEL．

The contact or the coil will be deleted，together with any connections．

## Changing make contacts to break contacts

Every contact in the MFD－Titan circuit diagram can be defined as either a make contact or a break contact．
－Switch to Entry mode and move the cursor over the contact name．
－Press ALT．The make contact will change to a break contact．

- Press OK $2 \times$ to confirm the change．


Figure 79：Change contact I．『I from make to break

## Creating and modifying connections

Contacts and relay coils are connected with the arrow in the Connect mode．MFD－Titan displays the cursor in this mode as an arrow．
－Use＜＞＾ン to move the cursor onto the contact field or coil field from which you wish to create a connection．
$\rightarrow$ Do not position the cursor on the first contact field．At this position the ALT button has a different function（Insert rung）．

- Press ALT to switch to Connect mode.
- Use < > to move the diagonal arrow between the contact fields and coil fields and $\wedge \vee$ to move between rungs.
- Press ALT to leave Connect mode.

MFD-Titan will leave the mode automatically when you move the diagonal arrow onto a contact field or coil field which has already been assigned.

In a rung, MFD-Titan automatically connects contacts and the terminal to the relay coil if there are no empty fields inbetween.

Never work backwards. You will learn why wiring backwards does not work in Section "Effects on the creation of the circuit diagram" on Page 390.


Figure 80: Circuit diagram with five contacts, invalid
When wiring more than four contacts in series, use one of the 96 M marker relays.



Figure 81: Circuit diagram with M marker relay

## Deleting connections

- Move the cursor onto the contact field or coil field to the right of the connection that you want to delete. Press ALT to switch to Connect mode.


## Press DEL.

MFD-Titan will delete a connection. Closed adjacent connections will be retained.

If several rungs are connected to one another, MFD-Titan first deletes the vertical connection. If you press DEL again, it will delete the horizontal connection as well.

## $\rightarrow$

You cannot delete connections that MFD-Titan has created automatically.

Close the delete operation with ALT or by moving the cursor to a contact or coil field.

## Inserting and deleting a rung

The MFD-Titan circuit diagram display shows three of the 256 rungs on the display at the same time. MFD-Titan automatically scrolls up or down the display to show hidden rungs - even empty ones - if you move the cursor past the top or bottom of the display.

A new rung is added below the last connection or inserted above the cursor position:

- Position the cursor on the first contact field of a rung.
- Press ALT.

The existing rung with all its additional connections is "shifted" downwards. The cursor is then positioned directly in the new rung.


Figure 82: Inserting a new rung

## Saving circuit diagrams

- Press the ESC button to save a circuit diagram.

STVE +



## Aborting circuit diagram entry

- If you want to exit without saving the circuit diagram, press ESC.
Use the cursor buttons $\wedge \vee$ to select the CANCEL menu.
- Press OK.

The circuit diagram is closed without saving.

## Searching for contacts and coils

You can search for contacts and coils in the following way:

- Press ESC. Use the cursor buttons $\wedge \vee$ to select the SEARCH menu.
- Press OK.
- Select the desired contact, coil and number with the $\vee$ and < > cursor buttons.
With function relays, select the function block, the number and the coil.
- Confirm the search with the OK button.


The device will search for the first occurrence of the contact or coil from the start of the search to the end of the circuit diagram. If no contact or coil is found, the MFD-Titan circuit diagram editor will continue the search from the start of the circuit diagram. If a contact or coil is found, the MFD-Titan editor automatically jumps to the respective field in the circuit diagram.

## "Go to" a rung

The MFD-Titan circuit diagram editor provides a Go To function in order to enable fast access to a rung.

- Press ESC and use the $\wedge \vee$ cursor buttons to select the GO TO menu.
- Press OK.


## 

```
L: | E:| E:714|
```



```
0||--...-HY|||
: | I:1 E:714|
```

- Select the required rung (L... ...) with the $\wedge \vee$ cursor buttons.

The first contact on the rung is always indicated.

- Press OK.

The cursor remains stationary at the required rung contact L 1 .

## Deleting the rung

MFD-Titan only removes empty rungs (without contacts or coils).

- Delete all the contacts and coils from the rung.
- Position the cursor on the first contact field of the empty rung.
- Press DEL.

The subsequent rung(s) will be "pulled up" and any existing links between rungs will be retained.

## Switching via the cursor buttons

With MFD-Titan, you can also use the four cursor buttons as hard-wired inputs in the circuit diagram.


P04

The buttons are wired in the circuit diagram as contacts $\mathrm{F}\|\|$ to F . The $P$ buttons can be activated and deactivated in the $\rightarrow$ System menu.

The P buttons can also be used for testing circuits or manual operation. These button functions are also useful for servicing and commissioning purposes.

## Example 1

A lamp at output Q1 is switched on and off via inputs I1 and 12 or by using cursor buttons $\wedge \vee$.


Figure 83: Switch Q1 via I1, I2, ^, or $\vee$

## Example 2

Input I1 is used to control output Q1. I5 switches over to cursor operation and via $\mathbb{N} \mathbb{I}$ disconnects the rung I $\mathbb{I}$.


Figure 84: I5 switches over to the cursor buttons.

[^0]The Status menu display shows whether the $P$ buttons are used in the circuit diagram.

## I134567日9... <br> FI <br> $1014: 55$ 

Displayed on the Status display:

- $P$ : button function wired and active,
- P2: button function wired, active and P2 button pressed,
- P-: button function wired and not active,
- Empty field: P buttons not used.


## Checking the circuit diagram

MFD-Titan contains a built-in measuring device enabling you to monitor the switching states of contacts, relays and function block coils during operation.

- Create the small parallel circuit below and save it.


Figure 85: Parallel circuit

- Switch MFD-Titan to RUN mode via the main menu.
- Return to the circuit diagram display.

You are now unable to edit the circuit diagram.
If you switch to the circuit diagram display and are unable to modify a circuit diagram, first check whether MFD-Titan is in STOP mode.

The circuit diagram display performs two functions depending on the mode:

- STOP: Creation of the circuit diagram,
- RUN: Power flow display.
- Switch on I3.


```
I |!m=a
L:OU| E:\ FUN
```

Figure 86: Power flow display

In the power flow display, energized connections are thicker than non-energized connections.

You can follow a current-carrying connection across all rungs by scrolling the display up and down.

The bottom right of the power flow display indicates that the controller is in RUN mode. $(\rightarrow$ Section "Power flow display with Zoom function"Page 95).

The power flow display will not show signal fluctuations in the millisecond range. This is due to the inherent delay factor of LCD displays.

## Function block editor

The MFD-Titan has the FUNCTION RELAYS menu in order to edit the function blocks without circuit diagrams. The function blocks are an inherent component of the program.

## Calling the function blocks via the FUNCTION RELAYS menu



Figure 87: Explanation of the function block display
Display of the function blocks for editing


Figure 88: Function block display during editing

## Editing function blocks

- Go to the FUNCTION RELAYS menu.
- Press the OK button.

| -111 |  |
| :---: | :---: |
| L:001 | E:787日 |

The following display appears if no function blocks are present.

The cursor flashes.

- Press the OK button.

The editor for inputting a function block is displayed．

## mil <br> ：ITU E：74日

|  | ＋ |
| :---: | :---: |
| WFl］ | ＋ |
| T1日 O | － |
| L：010 | E：64日 |

This display appears if there are function blocks present．
The function blocks are created in the sequence in which they were edited．

## Calling up function blocks from the circuit diagram

 If you enter a function block parameter from the circuit diagram，you will jump from the circuit diagram editor to the function block editor automatically．Once you have assigned the parameters，you will return to the position where you left the circuit diagram with Save or Cancel．The operation is carried out in the same way as with circuit diagram operation．Example：timing relay function block

| Function block： |  | Timing relay |
| :--- | :--- | :--- |
| Switch function： |  | On－delayed with random switching |
| Time range： |  | $\mathrm{M}: \mathrm{S}$（Minute：Seconds） |
| Set time $>11:$ |  | 20 min 30 s |
| Actual time $\mathrm{QV}>:$ |  | Copied to MD96 |

Assigning operands to an＞input of a function block

## $\rightarrow \quad$ Only the following variables can be assigned to the input of a function block：

－Constants，e．g．：42，
－Markers such as MD，MW，MB，
－Analog output QA，
－Analog inputs IA，
－All output variables of the function blocks ．．．QV＞

## Assigning operands to a QV＞output of a function block

Only markers such as MD，MW，MB or the analog output QA can be assigned to a variable output of a function block．

## Deleting operands on the function block inputs／ outputs



Position the cursor on the required operand．
－Press the DEL button．

```
T|| X% M:* +
    %I| 署
    IE
    0W% N0%16
L:OUI E:7日%|
```

| Fill Mow | ＋ |
| :---: | :---: |
| ［FI］ | ＋ |
| T 18 O | －－ |
| L：103 | E：780日 |

## Deleting an entire function block

Ensure that all contacts and coils of the function block are deleted．
－Select the required function block from the list．
In this case CP10．
－Press the DEL button．

| FFl\| Mow | + |
| :---: | :---: |
| T 188 | - |
| L. 1011 |  |

The function block is deleted.

## Checking function blocks

You can check function blocks in the same way as circuit diagrams. The device is in RUN mode.

Checking from the circuit diagram:
Position the cursor on a contact or a coil of the required function block. Press OK.

The function block will be displayed, in this case a timing relay.

- $>11=$ set time of the timing relay,
- QV> = the actual value is 14 minutes 42 seconds,
- The enable coil is actuated, EN is visible.

If a coil of a function block is actuated in RUN mode, the coil name with the coil designation will appear on the display.

## Checking the function block via the function block editor:

You access the function block list via the FUNCTION RELAYS menu.

Select the required function block:
In this case the arithmetic function block AR01 in the Adder mode.

Press the OK button.

The function block is presented with the actual values and the result.

Displaying the operands when checking the function blocks:
If you want to know which operands are used on the function block inputs and outputs when checking the function block, press the ALT button on the displayed value.


The operand is displayed.

- >11 = Actual value of counter C 01
- $>12=$ Constant 1095
- QV> = Marker double word MD56
- Press the ALT button again.

The display shows the values.

## Coil functions

You can set the coil function to determine the switching behaviour of relay coils. The following coil functions are assigned to all coils:

Table 10: Coil function

| MFD-Titan display | Coil function | Example |
| :---: | :---: | :---: |
| 5 | Contactor function |  |
| 」 | Impulse relay function |  |
| 3 | Set |  |
| F | Reset |  |
| J | Contactor function with negated result | 7006. JM4t.. |
| $\ldots$ | Cycle pulse with rising edge | FM01. |
| 1 | Cycle pulse with falling edge | W142. |

$\rightarrow \quad \begin{aligned} & \text { The function block descriptions state which coil functions } \\ & \text { can be used with the function block concerned. }\end{aligned}$

## Rules for wiring relay coils

Relay with contactor function

$\rightarrow$
A coil should only be used once in order to retain an overview of the relay states. However, retentive coil functions such as $\mathbf{E}, \mathrm{F}, \boldsymbol{I}$ can be used several times.

The following applies to non-retentive coil functions such
 falling edge detection): Each coil must only be used once. The last coil in the circuit diagram determines the status of the relay.

Exception: When working with jumps, the same coil can be used twice.

## Coil with contactor function ${ }^{1}$.

The output signal follows immediately after the input signal and the relay acts as a contactor.


Signal diagram of contactor function

## Impulse relay ل"

The relay coil switches whenever the input signal changes from 0 to 1 . The relay behaves like a bistable flip-flop.


Figure 90: Signal diagram of impulse relay

A coil is automatically switched off if the power fails and if STOP mode is active. Exception: Retentive coils retain signal 1 (see $\rightarrow$ Section "Retention", Page 380).
"Set" 5 and "Reset" F coil function The "Set" ${ }^{*}$ ' and "Reset" $F$ coil functions are normally used in pairs.

The relay picks up when the coil is set (A) and remains in this state until it is reset $(B)$ by the coil function.

The supply voltage is switched off (C), the coil does not have a retentive effect.


Figure 91: Signal diagram of "Set" and "Reset"

If both coils are triggered at the same time, priority is given to the coil in the circuit diagram with the higher rung number. This is shown in the above signal diagram in section B.


Figure 92: Simultaneous triggering of Q Q1

In the example above, the reset coil has priority with simultaneous triggering of the set and reset coils.

## Coil negation (inverse contactor function)

The output signal is simply an inversion of the input signal; the relay operates like a contactor with contacts that have been negated. If the coil is triggered with the 1 state, the coil switches its make contacts to the 0 state.


Figure 93: Signal diagram of inverse contactor function

## Rising edge evaluation (cycle pulse) [/]

If the coil is only meant to switch on a rising edge, this function will be applied. With a change in the coil state from 0 to 1 , the coil switches its make contacts to the 1 state for one cycle.


Figure 94: Signal diagram of cycle pulse with rising edge

## Falling edge evaluation (cycle pulse) lr

If the coil is only meant to switch on a falling edge, this function will be applied. With a change in the coil state from 1 to 0 , the coil switches its make contacts to the 1 state for one cycle.


Figure 95: Signal diagram of cycle pulse with falling edge
$\longrightarrow \begin{aligned} & \text { A set coil is automatically switched off if the power fails } \\ & \text { and if the device is in STOP mode. Exception: Retentive } \\ & \text { coils retain signal } 1 \text { (see } \longrightarrow \text { Section "Retention", } \\ & \text { Page 380). }\end{aligned}$

## Function blocks

The function blocks are used to simulate some of the devices used in conventional open-loop and closed-loop control systems. MFD-Titan provides the following function blocks:

- Analog value comparator/threshold controller (only with MFD-Titan 24 V DC variants)
- Arithmetic,
- addition, subtraction, multiplication, division
- Compare data blocks
- Transfer data blocks
- Boolean operation
- Counters,
- up and down counters with upper and lower threshold values, preset
- frequency counters,
- high-speed counters,
- incremental encoder counters
- Comparators
- Text, output freely editable texts, enter values
- Data function block
- PID controllers
- Smoothing filters
- Value scaling
- Pulse width modulator
- Read (GET) data from the easy-NET
- Time switches,
- weekday/time
- year, month, day (date),
- Numerical converters
- Master reset
- Operating hours counter
- Write (PUT) data to the easy-NET
- Synchronisation of date and time via the easy-NET
- Timing relays
- on-delayed,
- on-delayed with random switching,
- off-delayed, also retriggerable,
- off-delayed with random switching, also retriggerable,
- on and off delayed,
- on and off delayed with random switching,
- single pulse,
- synchronous flashing,
- asynchronous flashing,
- Set cycle time
- Value limitation

The following applies to function blocks:

$\rightarrow$
The most recent actual values are cleared if the power supply is switched off or if MFD-Titan is switched to STOP mode. Exception: Retentive data keeps its state $(\rightarrow$ Section "Retention", Page 380).

The most recent actual values are transferred to the operands every cycle. The data function block is an exception.

## Attention!

The following applies to RUN mode: MFD-Titan processes the function block after a pass through the circuit diagram. The last state of the coils is used for this.
$\rightarrow$
If you want to prevent other people from modifying the parameters, change the access enable symbol from " + " to "-" when creating the circuit diagram and setting parameters and protect the circuit diagram with a password.

## Attention!

The function blocks are designed so that a function block output can be assigned directly to the input of another function block. This enables you always to have an overview of which value is transferred.

If different data formats are used, such as if the first function block uses 32 bits and an 8 -bit or 16-bit format is used for further processing, sign value errors or value errors may occur when transferring from one function block to another one.

## Analog value comparator/threshold value switch

MFD-Titan provides 32 analog value comparators from A 01 to A 32 .

With an analog value comparator or threshold value switch you can, for example, compare analog input values with a setpoint value.

All MFD-Titan DC variants have analog inputs.
The following comparisons are possible:

- Function block input $\$ I \|$ greater than or equal to, equal to, less than or equal to function block input ME
 amplify and adjust the values of the function block inputs.
- The .e. function block input can be used as an offset for the $\%$ It input.
- The $\mathrm{IHY}^{\prime}$ function block input is used for the positive and negative switching hysteresis of the input $\$ \mathbb{I}$. The contact switches according to the selected comparison mode of the function block.


##  <br> 

Figure 96: MFD-Titan circuit diagram with analog value comparators

Parameter display and parameter set for analog value comparators:

| H03 | Function block analog value comparator number 02 |
| :---: | :---: |
| ET | Greater than mode |
| + | Appears in the parameter display |
| \II | Comparison value 1 |
| >F1 | Gain factor for >II ( $>\mathrm{I} 11=>\mathrm{F} 1 \times$ value) |
| >12 | Comparison value 2 |
| PE |  |
| \% 0 | Offset for the value of $>I 1$ |
| $\mathrm{SHV}^{\text {H }}$ | Switching hysteresis for value $>\mathrm{I}$ ? (Value HV applies to positive and negative hysteresis.) |

## Inputs


$\geqslant \mathrm{HY}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block

Analog value comparator operating modes

| Parameter | Function |
| :---: | :---: |
| GT | III greater than SI |
| Ed | >II equal to > I 2 |
| LT | >II less than > I ? |

## Contacts

A 01 Q 1 to A 32Q1
Memory requirement of the analog value comparator
The analog value comparator function block requires 68 bytes of memory plus 4 bytes per constant on the function block inputs.


Figure 97: Signal diagram of the analog value comparator
1: actual value on >I1
2: setpoint value on >I
3: hysteresis on $\mathrm{YHY}^{\prime}$
4: switching contact (make contact)
5: offset for value >II

6: actual value plus offset

- Range A: Compare $>$ II > $>$ II
- The actual value $\$ I 1$ increases.
- The contact switches when the actual reaches the setpoint value.
- The actual value changes and falls below the value of the setpoint value minus the hysteresis.
- The contact goes to the normal position.
- Range B: Compare II $^{2}<>$ I 2
- The actual value drops.
- The contact switches if the actual reaches the setpoint value.
- The actual value changes and rises above the value of the setpoint value plus hysteresis.
- The contact goes to the normal position.
- Range C: Compare >II \ggİ with offset
- This example behaves as described in Range A. The offset value is added to the actual value.
- Comparison $\ I I_{1}=\geqslant I$ I

The contact switches on:

- If the setpoint is exceeded with the actual value rising.
- If the setpoint is undershot with the actual value decreasing.

The contact switches off:

- If the hysteresis limit is exceeded with the actual value rising.
- If the hysteresis limit is undershot with the actual value decreasing.


## Arithmetic function block

MFD-Titan provides 32 arithmetic function blocks AR01 to AR32.

The arithmetic function block is used for arithmetic operations. All four basic arithmetic operations are supported:

- add,
- subtract,
- multiply,
- divide.


## Inputs

The function block inputs $>\mathbb{I} \mid$ and $\$ \mathbb{I}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ...QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01

An arithmetic function block is not wired in the circuit diagram.


Parameter display and parameter set for arithmetic function blocks:

| Fira | Arithmetic function block number 32 |
| :---: | :---: |
| FDO | Addition mode |
| + | Appears in the parameter display |
| /II | First value |
| PI2 | Second value |
| QU) | Result of the addition |

Arithmetic function block modes

| Parameter | Function |
| :---: | :---: |
| FDO | Addition of summand value $>$ If plus summand $\geqslant$ I 2 |
| sue | Subtraction of minuend $\geqslant 11$ minus subtrahend $\geqslant I 2$ |
| W010 | Multiplication of factor $>$ I 11 by factor $>$ I Z |
| QIV | Division of dividend \$IT by divisor \$IE |

Value range
The function block operates in the integer range from -2147483648 to +2147483647 .

## Behaviour when value range is exceeded

- The function block sets the switching contact AR..CY to status 1.
- The function block retains the value of the last valid operation. The value is zero when it is first called.


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Contacts

AR01CY to AR32CY: CARRY overflow bit, value on function block output greater than or less than the value range.

AR01ZE to AR32ZE: ZERO zero bit, value on function block output is equal to zero.

## Coils

The arithmetic function block does not have any coils.
Memory requirement of the arithmetic function block The arithmetic function block requires 40 bytes of memory plus 4 bytes per constant on the function block inputs.

## Addition

$42+1000=1042$
$2147483647+1=$ last valid value of this arithmetic operation, due to overflow (CARRY)
AR..CY = Status 1
$-2048+1000=-1048$

## Subtraction

$1134-42=1092$
$-2147483648-3=$ last valid value of this arithmetic operation, due to overflow (CARRY)
AR..CY = Status 1
$-4096-1000=-5096$
$-4096-(-1000)=-3096$

## Multiplication

$12 \times 12=144$
$1000042 \times 2401=$ last valid value of this arithmetic operation, due to overflow (CARRY)
Correct value $=2401100842$
AR..CY = Status 1
$-1000 \times 10=-10000$

## Division

1024: $256=4$
1024: $35=29$ (the places after the decimal point are omitted.)

1024: $0=$ last valid value of this arithmetic operation, due to overflow (CARRY)
(mathematically correct: "Infinite")
AR..CY = Status 1
-1000: $10=-100$
1000: $-10=-100$
$-1000:(-10)=100$
10: $100=0$

## Data block comparator

MFD-Titan provides 32 function blocks BC01 to BC32 for comparing values of two consistent marker ranges. The comparison is in byte format. The following marker types can be compared:

- MB,
- MW,
- MD.

The function block is enabled in the circuit diagram.


```
EC1E|
EC21ER
ECa1E:
M4|
```



Figure 98: MFD-Titan circuit diagram with enabling of data block comparator function block

| Emil | + |
| :---: | :---: |
| II |  |
| \%IE |  |
| 2NO |  |

Parameter display and parameter set for a data block comparator:

| ECI 1 | Data block comparator function block number 27 |
| :---: | :---: |
| + | Appears in the parameter display |
| \$II | Start of comparison range 1 |
| 7I2 | Start of comparison range 2 |
| \%NO | Number of elements to be compared in bytes per range. Value range 1 to +383 |

Only constants can be modified in the parameter display of a function block.

According to the operands at the inputs $\$ I \|$ and $\$ I$ the following operating modes are possible:

## Inputs

The function block inputs $\$ I 1, ~ / I I$ and $\$ N$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Specifying the marker range without offset

If MB, MW or MD markers are specified at both $\% I \mid$ and
IIE the number of the markers is the start of comparison
range 1 or 2 .
Specifying the marker range with offset
If you wish to work with an offset, specify one of the following variables at function block input $>\mathbb{I I}$ or $>\mathbb{I E}$ :

- Constant,
- Actual value ..QV of a function block,
- Analog input IA..,
- Analog output QA..

The value at the input is taken as the offset to marker MB01.

## Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
- -: Access disabled


## Contacts

$\mathrm{BC01E1}$ to BC 32 E 1 : the number of comparison elements exceeds one of the comparison ranges.

BC01E2 to BC32E2: the two comparison ranges overlap.
BC01E3 to BC32E3: the specified offset of the comparison ranges is outside of the permissible range.

BC01EQ to BC32EQ: output of the comparison result. Only valid if the BC..EN enable has been triggered.
Status $0=$ Comparison ranges not equal,
Status 1 = Comparison ranges equal

## Coils

BC01EN to BC32EN: Enable coil of the data block comparator function block.

## Memory requirement of the data block comparator function block

The data block comparator function block requires 48 bytes of memory plus 4 bytes per constant on the function block inputs.

## Function of the data block comparator function block

 The data block comparator function block compares two consistent data blocks.The comparison is active if the $B C$..EN (enable) is triggered.
$\rightarrow \quad$ No data blocks are compared if an error is present.
The error outputs E1, E2 and E3 are evaluated regardless of the status of the enable.

## Example:

Comparison of marker blocks, definition of marker ranges direct

Two marker blocks are to be compared. Block 1 starts at MB10, Block 2 at MB40. Each block is 10 bytes long.

Parameters of BCO1 function block:
Comparison range $1: \% \mathrm{IN} \mathrm{HE} \|$
Comparison range $2: \% \mathrm{IL} \mathrm{AE} \mathrm{E}$
Number of bytes:

| Comparison range 1 | Value of marker range 1 (decimal) | Comparison range 2 | Value of marker range 2 (decimal) |
| :---: | :---: | :---: | :---: |
| MB10 | 39 | MB40 | 39 |
| MB11 | 56 | MB41 | 56 |
| MB12 | 88 | MB42 | 88 |
| MB13 | 57 | MB43 | 57 |
| MB14 | 123 | MB44 | 123 |
| MB15 | 55 | MB45 | 55 |
| MB16 | 134 | MB46 | 134 |
| MB17 | 49 | MB47 | 49 |
| MB18 | 194 | MB48 | 194 |
| MB19 | 213 | MB49 | 213 |

The comparison result of the function block BC01 is:
$\mathrm{BCO1EQ}=1$, the data block ranges have the same content.

## Example:

Comparison of marker blocks, definition of a marker range with offset

Two marker blocks are to be compared. Block 1 starts at MB15, Block 2 at MB65. Each block is 4 bytes long.

Parameters of BC01 function block:
Comparison range $1: \% \mathrm{I}|\mathrm{HE}| 5$
Comparison range $2: \% \mathrm{IE}$
Number of bytes: 4
Marker MB01: 1
$\rightarrow$
Comparison range 2: Constant 64:
MB01 plus Offset: $1+64=65 \rightarrow$ MB65.

| Comparison <br> range 1 | Value of <br> marker range 1 <br> (decimal) | Comparison <br> range 2 | Value of <br> marker range 2 <br> (decimal) |
| :--- | :--- | :--- | :--- |
| MB15 | 45 | MB65 | 45 |
| MB16 | 62 | MB66 | 62 |
| MB17 | 102 | MB67 | 102 |
| MB18 | 65 | MB68 | 57 |

The comparison result of the function block BC01 is:
$B C 01 E Q=0$, the data block ranges do not have the same content.

MB18 are MB68 not identical.

## Example:

Comparison of marker blocks, definition of a marker range in a different format.

Two marker blocks are to be compared. Block 1 starts at MB60, Block 2 at MD80. Each block is 6 bytes long.

Parameters of BC01 function block:
Comparison range $1: \%$ II $N E W I$
Comparison range 2:\%IE MDII
Number of bytes: HO
$\rightarrow \quad \begin{aligned} & \text { The comparison is in byte format. MD80 has } 4 \text { bytes. } \\ & \text { Therefore the first two bytes of MD81 are also compared. }\end{aligned}$

| Comparison range 1 | Value of marker range 1 (decimal/ binary) | Comparison range 2 | Value of marker range 2 (decimal/ binary) |
| :---: | :---: | :---: | :---: |
| MB60 | $\begin{aligned} & 45 / \\ & 00101101 \end{aligned}$ | MD80 (Byte 1, LSB) | $\begin{aligned} & \hline 1097219629 / \\ & 0100000101100110001111100010 \\ & 1101 \end{aligned}$ |
| MB61 | $\begin{aligned} & 62 / \\ & 00111110 \end{aligned}$ | MD80 (Byte 2) | $\begin{aligned} & 1097219629 / \\ & 0100000101100110001111100010 \\ & 1101 \end{aligned}$ |
| MB62 | $\begin{aligned} & 102 / \\ & 01100110 \end{aligned}$ | MD80 (Byte 3) | $\begin{aligned} & 1097219629 / \\ & 0100000101100110001111100010 \\ & 1101 \end{aligned}$ |
| MB63 | $\begin{aligned} & 65 / \\ & 01000001 \end{aligned}$ | MD80 <br> (Byte 4, MSB) | ```1097219629/ 0100000101100110001111100010 1101``` |
| MB64 | $\begin{aligned} & 173 / \\ & 10101101 \end{aligned}$ | MD81 <br> (Byte 1, LSB) | $\begin{aligned} & 152771 \\ & 0011101110101101 \end{aligned}$ |
| MB65 | $\begin{aligned} & 59 / \\ & 00111011 \end{aligned}$ | MD81 (Byte 2) | $\begin{aligned} & 152771 \\ & 0000100010101101 \end{aligned}$ |

The comparison result of the function block BC01 is:
$\mathrm{BC01EQ}=0$, the data block ranges do not have the same content.

MB65 and MD81 (Byte 2) are not identical.

## Example:

Comparison of marker blocks, range violation error.
Two marker blocks are to be compared. Block 1 starts at MD60, Block 2 at MD90. Each block is 30 bytes long.

Parameters of BC01 function block:
Comparison range $1: \%$ It MEAT
Comparison range $2: \% \mathrm{IL}$ |thll
Number of bytes: $\quad$ NO
The comparison is in byte format. MD90 to MD96 is 28 bytes. The number of bytes is 30 bytes.

The error message "Number of comparison elements exceeds one of the comparison ranges" is output.

BC01E1 is 1 .

## Example

Comparison of marker blocks, range overlap error.
Two marker blocks are to be compared. Block 1 starts at MW60, Block 2 at MW64. Each block is 12 bytes long.

Parameters of BC01 function block:
Comparison range $1: \%$ It kill
Comparison range $2: \%$ It kill 4
Number of bytes: $1 \mathrm{NW} \quad 12$
The comparison is in byte format. MW60 to MW64 is 8 bytes. The number of bytes is 12 bytes.

The error message "Comparison ranges overlap" is output.
BC01E2 is 1 .

## Example:

Comparison of marker blocks, invalid offset error.
Two marker blocks are to be compared. Block 1 starts at MW40, Block 2 at MW54. The block length is specified by the value of the counter C 01QV.

Parameters of BCO1 function block:
Comparison range $1: \%$ IN $\|$
Comparison range $2: \% \mathrm{IE}$ स 1 W 5
Number of bytes: NH IID
$\rightarrow$
The value of C 01QV is 1024 . This value is too big. The value at $\$ \mathrm{NW}$ can be between 1 and +383 .

The message "The specified offset of the comparison ranges is outside of the permissible range" is output.

BC01E3 is 1 .

## Data block transfer

MFD-Titan is provided with 32 function blocks BT01 to BT32 for transferring values from one marker range (Copy data). The marker ranges can be overwritten with a particular value (data initialisation). The following marker types can be transferred and overwritten:

- MB,
- MW,
- MD.

The function block is enabled in the circuit diagram.


Figure 99: MFD-Titan circuit diagram with enabling of transfer data block function block

| ETII INI |  |
| :--- | :--- |
| $\Rightarrow I U$ | + |
| $\Rightarrow I U$ |  |
| $\Rightarrow N U$ |  |

Parameter display and parameter set for a data block transfer function block:

| ETIT | Data block transfer function block number 07 |
| :---: | :---: |
| INI | INI mode, initialise marker ranges |
| + | Appears in the parameter display |
| \II | Source range start |
| SIE | Destination range start |
| 3NO | Number of elements to be written in bytes per range. Value range 1 to +383 |

Only constants can be modified in the parameter display of a function block.

Operating modes of the transfer data block function block

| Parameter | Function |
| :--- | :--- |
| INI | Initialise marker ranges |
|  | Copy marker ranges |

## Inputs

The function block inputs $\overline{I I}, \overline{I E}$ and $\$ N O$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Specifying the marker range without offset

 If MB, MW or MD markers are specified both at $>$ I I and at $\rangle I \mathbb{I}$, the number of markers defines the source or destination range.
## Specifying a marker range with offset

If you wish to work with an offset, specify one of the following variables at function block input $\$ I \mid$ or $\$ I \mathbb{I}$

- Constant,
- Actual value ..QV of a function block,
- Analog input IA..,
- Analog output QA..

The value at the input is taken as the offset to marker MB01.

## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - -: Access disabled

## Contacts

BT01E1 to BT32E1: the number of marker bytes exceeds the source or destination range.

BT01E2 to BT32E2: source and destination range overlap. Only valid for CPY mode, copy marker ranges.

BT01E3 to BT32E3: the specified offset is invalid.

## Coils

BT01T_ to BT32T_: trigger coil of the transfer data block function block.

## Memory requirement of the transfer data block function block <br> The transfer data block function block requires 48 bytes of memory plus 4 bytes per constant at the function block inputs.

## Function of the transfer data block function block

 The transfer data block comparator function block has two operating modes.
## $\rightarrow$

 No data blocks are initialised or copied if an error occurs.
## Initalising INI marker ranges

There is one source range and one destination range. The source range is specified at $\$ I 1$. The length of the source range is one byte. The destination range is specified at $\rangle \mathrm{II}$. The length of the destination range is specified by the number of bytes at the $\overline{\mathrm{N}} \mathrm{W}$ input.

The content of the source range is transferred to the marker bytes in the destination range.

The function block executes the transfer if there is a rising edge from 0 to 1 at the BT..T_ (Trigger) coil.

The error outputs E1, E2 and E3 are evaluated regardless of the status of the trigger.

## Example:

Initialising marker blocks, specifying marker ranges directly
The value of marker byte 10 is to be transferred to marker bytes 20 to 29 .

Parameters of BT01 function block:
Source range: $\quad \$ 1 / \mathrm{AEII}$
Destination range: FIE AB El
Number of bytes: FNO

| Source range | Value of source marker range (decimal) | Destination range | Value of destination marker range (decimal) |
| :---: | :---: | :---: | :---: |
| MB10 | 123 | MB20 | 123 |
|  |  | MB21 | 123 |
|  |  | MB22 | 123 |
|  |  | MB23 | 123 |
|  |  | MB24 | 123 |
|  |  | MB25 | 123 |
|  |  | MB26 | 123 |
|  |  | MB27 | 123 |
|  |  | MB28 | 123 |
|  |  | MB29 | 123 |

After a rising edge from 0 to 1 at coil BT01T_ the value 123 is present in the marker bytes MB20 to MB29.

## Example:

Initialisation of marker blocks, definition of a range with offset

The content of marker byte MB15 is to be transferred to marker bytes MB65 to MB68.

Parameters of BT01 function block:
Source range: $\quad \geqslant 11 \mathrm{NE} \mid 5$
Destination range: 7 II 㓦
Number of bytes: $\$ 10 \mathrm{~L}$
Marker MB01: 1
Destination range: Constant 64:
Marker MB01 plus Offset: $1+64=65 \rightarrow$ MB65.

| Source range | Value of <br> source marker <br> range <br> (decimal) | Destination <br> range | Value of <br> destination <br> marker range <br> (decimal) |
| :--- | :--- | :--- | :--- | :--- |
| MB15 | 45 | MB65 45  <br>   MB66 | 45 |

After a rising edge from 0 to 1 at coil BT01T_ the value 45 is present in the marker bytes MB65 to MB68.

## Example:

Initialisation of marker blocks, definition of a range in a different format.

The value of marker byte MB60 is to be transferred to MD80 and MD81.

Parameters of BT01 function block:
Source range: $\quad \geqslant I \| \mathrm{NE} \mathrm{GI}$

Number of bytes: 7 N
$\rightarrow \quad$ The transfer is in byte format. MD80 has 4 bytes and MD81 has 4 bytes, which means that 10 has the value 8.

| Comparison range 1 | Value of marker range 1 (decimal/ binary) | Comparison range 2 | Value of marker range 2 (decimal/binary) |
| :---: | :---: | :---: | :---: |
| MB60 | $\begin{aligned} & \hline 45 / \\ & 00101101 \end{aligned}$ | $\begin{aligned} & \hline \text { MD80 } \\ & \text { (Byte 1, LSB) } \end{aligned}$ | $\begin{aligned} & 757935405 / \\ & 00101101001011010010110100101101 \end{aligned}$ |
|  |  | MD80 (Byte 2) | 757935405/ <br> 00101101001011010010110100101101 |
|  |  | MD80 (Byte 3) | 757935405/ <br> 00101101001011010010110100101101 |
|  |  | MD80 <br> (Byte 4, MSB) | 757935405/ <br> 00101101001011010010110100101101 |
|  |  | MD81 <br> (Byte 1, LSB) | $\begin{aligned} & 757935405 / \\ & 00101101001011010010110100101101 \end{aligned}$ |
|  |  | MD81 (Byte 2) | 757935405/ <br> 00101101001011010010110100101101 |
|  |  | MD81 (Byte 3) | 757935405/ <br> 00101100010110110010110100101101 |
|  |  | MD81 <br> (Byte 4, MSB) | 757935405/ <br> 00101101001011010010110100101101 |

After a rising edge from 0 to 1 at coil BT01T_ the value 757935405 is present in the marker double words MD80 and MD81.

## Example:

Transfer of marker byte, range violation error.
The value of marker byte MB96 is to be transferred to MD93, MD94, MD95 and MD96. The length is 16 bytes.

Parameters of BT01 function block:
Source range: 7 IN NOHI
Destination range: :IE HO 4 I
Number of bytes: FNO 1目

The transfer is in byte format. MD93 to MD96 is 16 bytes. 18 bytes were incorrectly defined as length.

The error message "Number of elements exceeds the destination range" is output.

BT01E1 is 1 .

## Example:

Transfer of marker bytes, invalid offset error.
The value of marker byte MB40 is to be transferred to MW54 and subsequent marker words. The block length is specified by the value of the counter C 01 QV .

Parameters of BC01 function block:
Comparison range $1: \% \mathrm{IT} \mathrm{HE} 4$
Comparison range $2: \% 12$ |\$W 54
Number of bytes: $2 N 0 \mathbb{N} \mathbb{W}$
The value of C 01 QV is 788 . This value is too big . The value at $\$^{W} 0$ can be between 1 and +383 .

The message "The specified offset of the destination range is outside of the permissible range" is output.

BT01E3 is 1 .

## CPY mode, copy marker ranges

There is one source range and one destination range. The source range is specified at $\geqslant \mathbb{I}$. The destination range is specified at $>\boldsymbol{I}$. The length of the source and destination range is specified by the number of bytes at the $\% \mathrm{~N} \mathbf{i n p u t}$.

The content of the source range is copied to the marker bytes in the destination range.

The function block executes the copy operation if there is a rising edge from 0 to 1 at the BT..T_ (Trigger) coil.

The error outputs E1, E2 and E3 are evaluated regardless of the status of the trigger.

## Example:

Copy of marker blocks, definition of marker ranges direct
The content of marker bytes 10 to 19 is to be transferred to marker bytes 20 to 29 .

Parameters of BT01 function block:
Source range: $\quad>I\|\mathrm{NE}\|$
Destination range: FIE AB ED
Number of bytes:
$1]$

| Source range | Value of <br> source marker <br> range <br> (decimal) | Destination <br> range | Value of <br> destination <br> marker range <br> (decimal) |
| :--- | :--- | :--- | :--- |
| MB10 | 42 | MB20 | 42 |
| MB11 | 27 | MB21 | 27 |
| MB12 | 179 | MB22 | 179 |
| MB13 | 205 | MB23 | 205 |
| MB14 | 253 | MB24 | 253 |
| MB15 | 17 | MB25 | 17 |
| MB16 | 4 | MB26 | 4 |
| MB17 | 47 | MB27 | 47 |
| MB18 | 11 | MB28 | 11 |
| MB19 | 193 | MB29 | 193 |

After a rising edge from 0 to 1 at coil BT01T_ the content of MB10 to MB19 is copied to the marker bytes MB20 to MB29.

## Example:

Copying of marker blocks, definition of a marker range with offset

The content of marker bytes MB15 to MB18 is to be copied to marker bytes MB65 to MB68.

Parameters of BT01 function block:
Source range: $\quad 7 \mathrm{IN} \mathrm{NE} \mid 5$
Destination range: 7 II 旡
Number of bytes: $\$ 10 \mathrm{~L}$
Marker MB01: 1
Destination range: Constant 64:
Marker MB01 plus Offset: $1+64=65 \rightarrow$ MB65.

| Source range | Value of <br> source marker <br> range <br> (decimal) | Destination <br> range | Value of <br> destination <br> marker range <br> (decimal) |
| :--- | :--- | :--- | :--- |
| MB15 | 68 | MB65 | 68 |
| MB16 | 189 | MB66 | 189 |
| MB17 | 203 | MB67 | 203 |
| MB18 | 3 | MB68 | 3 |

After a rising edge from 0 to 1 at coil BT01T_ the content of MB15 to MB18 is copied to the marker bytes MB65 to MB68.

## Example:

Copying of marker blocks, definition of a marker range in a different format.

The value of marker byte MD60 to MD62 is to be copied to MW40 to MW45.

Parameters of BT01 function block:
Source range: $\quad 711 \mathrm{NLII}$

Number of bytes: FNO 12
$\rightarrow$
The transfer is in byte format. 12 bytes are to be copied. The range MD60 to MD62 is 12 bytes. This is copied to the range MW40 to MW45.

| Comparison range 1 | Value of marker range 1 (decimal/binary) | Comparison range 2 | Value of marker range 2 (decimal/binary) |
| :---: | :---: | :---: | :---: |
| MD60 | 866143319/ <br> 0011001110100000 <br> 0100110001010111 | MW40 (LSW) | 19543/ <br> 0011001110100000 <br> 0100110001010111 |
| MD60 | 866143319/ <br> 0011001110100000 <br> 0100110001010111 | MW41 (MSW) | 13216/ <br> 0011001110100000 <br> 0100110001010111 |
| MD61 | $\begin{aligned} & \text { 173304101/ } \\ & 0000101001010100 \\ & 0110100100100101 \end{aligned}$ | MW42 (LSW) | $\begin{aligned} & 26917 / \\ & 0000101001010100 \\ & 0110100100100101 \end{aligned}$ |
| MD61 | 173304101/ 0000101001010100 <br> 0110100100100101 | MB43 (MSW) | $\begin{aligned} & 2644 / \\ & 0000101001010100 \\ & 0110100100100101 \end{aligned}$ |
| MD62 | $982644150 /$ <br> 0011101010010001 <br> 1111010110110110 | MB44 (LSW) | $629021$ <br> 0011101010010001 <br> 1111010110110110 |
| MD62 | $\begin{aligned} & 982644150 / \\ & 0011101010010001 \\ & 1111010110110110 \end{aligned}$ | MB45 (MSW) | $\begin{aligned} & \hline 14993 / \\ & 0011101010010001 \\ & 1111010110110110 \end{aligned}$ |

After a rising edge from 0 to 1 at coil BT01T_ the values are copied to the appropriate range.

## Example:

Copying of marker bytes, destination range violation error.
The value of marker bytes MB81 to MB96 is to be transferred to MD93, MD94, MD95 and MD96. The length is 16 bytes.

Parameters of BT01 function block:
Source range: $\quad 7 \mathrm{If} \mathrm{NE} \mathrm{B} \mid$
Destination range: 7 IT HO4
Number of bytes: 1 NO

The transfer is in byte format. MD93 to MD96 is 16 bytes. 18 bytes were incorrectly defined as length.

The error message "Number of elements exceeds the destination range" is output.

BT01E1 is 1 .

## Example

Comparison of marker blocks, range overlap error.
12 bytes are to be copied starting from MW60. MW64 is specified as destination address.

Parameters of BT01 function block:
Comparison range $1: \%$ It Whall
Comparison range $2: \%$ IE WW:W
Number of bytes: NH
The copy operation is in byte format. MW60 to MW64 is 8 bytes. The number of bytes is 12 bytes.

The error message "Both ranges overlap" is output.
BC01E2 is 1 .

## Example:

Copying of marker bytes, invalid offset error.
The value of marker word MW40 is to be copied to MW54 and subsequent marker words. The block length is specified by the value of the counter C 01QV.

Parameters of BT01 function block:
Comparison range $1: \% \mathrm{II}$ |\$W 4 II

Number of bytes: $\$ \mathrm{NO} \mathrm{\square IN}$
$\rightarrow$
The value of C 01 QV is 10042 . This value is too big. The value at $7 \mathbb{N}$ can be between 1 and +383 .

The message "The specified offset of the destination range is outside of the permissible range" is output.

BT01E3 is 1.

## Boolean operation

MFD-Titan provides 32 function blocks from BV01 to BV32 for Boolean operations with values.

The following possibilities are provided by the Boolean operation function block:

- Screening out of particular bits from values,
- Bit pattern recognition,
- Bit pattern modification.

A Boolean operation function block is not wired in the circuit diagram.

| EUE1 FHE | + |
| :---: | :---: |
| \%I |  |
| \%I |  |
| QV\% |  |

Parameter display and parameter set for Boolean operation function block:

| Eve" | Boolean operation function block number 27 |
| :---: | :---: |
| FW0 | AND operation mode |
| + | Appears in the parameter display |
| \$I1 | First value |
| \% 12 | Second value |
| W\% | Result of the operation |

Only constants can be modified in the parameter display of a function block.

Operating modes of the Boolean operation function block

| Parameter | Function |
| :--- | :--- |
| FHD | AND operation |
|  | OR operation |
| NOT | Exclusive OR operation |
|  | Negation of the Boolean value of $\$ I 1$ |

## Value range

32 bit signed value
Inputs
The function block inputs $\%$ It and $\$ \mathbb{I}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block

Actual value ...QV>
The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - -: Access disabled

## Contacts

BV01ZE to BV32ZE: ZERO zero bit, value on output function block is equal to zero

## Coils

The Boolean operation function block does not have coils.

## Memory requirement Boolean operation function block <br> The Boolean operation function block requires 40 bytes of memory plus 4 bytes per constant on the function block inputs.

## Function of Boolean operation function block

The function block creates the operation depending on the operating mode.
$\rightarrow$
If you program a negative value, e.g.:-10 ${ }_{\text {dec, }}$, the CPU will form the two's complement of the amount.

Example:
$-10_{\text {dec }}=10000000000000000000000000001010_{\text {bin }}$
Two's complement =
$111111111111111111111111{11110110_{\text {bin }}=}$ FFFFFFF6hex

Bit 32 is the signed bit and remains as 1 .

## AND Boolean operation

Value $\overline{\prime I} 1: \quad 13219_{\mathrm{dec}}=0011001110100011_{\mathrm{bin}}$
Value 「II: $\quad 57$ 193 $_{\text {dec }}=1101111101101001_{\text {bin }}$


## OR Boolean operation

Value $\overline{\prime I} 1: \quad 13219_{\mathrm{dec}}=0011001110100011_{\mathrm{bin}}$
Value $\overline{7 I}: \quad 57193_{\mathrm{dec}}=1101111101101001_{\mathrm{bin}}$
Result QV>: $\quad 65515_{\text {dec }}=1111111111101011_{\text {bin }}$

## XOR Boolean operation

Value 「II: $\quad 13219_{\mathrm{dec}}=0011001110100011_{\mathrm{bin}}$
Value $>$ II: $\quad 57193_{\mathrm{dec}}=1101111101101001_{\mathrm{bin}}$
Result QV>: $\quad 60618^{\text {dec }}=1110110011001010_{\text {bin }}$

## NOT Boolean operation

Value :II: 13219 ${ }_{\text {dec }}=$ $00000000000000000011001110100011_{\text {bin }}$

Value ${ }^{\text {IIII: }}$ Omitted
Result QV>: -13220 dec =
$11111111111111111100110001011100_{\text {bin }}$
The NOT operation operates according to the following rules:
/I1, positive value Negate value of $\$ I I$ and subtract 1 :
$-|\boldsymbol{I I}|-1=\rangle I 己$
$\rangle I 1$, Negative value Value of $\$ I \mid$ and subtract 1 :
$|\zeta I|-1=\rangle I 2$

## Counters

MFD-Titan provides 32 up/down counters from C 01 to C 32 . The counter relays allow you to count events. You can enter upper and lower threshold values as comparison values. The contacts will switch according to the actual value. To specify a start value, for example, counting from the value 1200, this can be implemented using a "C .." counter.

The "C.." counters are cycle time dependent.

## Wiring of a counter

You integrate a counter into your circuit in the form of a contact and coil. The counter relay has different coils and contacts. a relay once only in the circuit diagram.


Figure 100: MFD-Titan circuit diagram with counter relay


In the parameter display of a counter relay you change setpoint values and/or the preset value and the enabling of the parameter display.

## Value range

The function block operates in the integer range from -2147483648 to 2147483647.

Behaviour when value range is exceeded
The function block sets the switching contact C .. CY to the status 1 and retains the value of the last valid operation.
$\rightarrow$
The counter C counts every rising edge on the counter input. If the value range is exceeded, the switching contact C ..CY switches to status 1 for one cycle per rising edge detected.

## Inputs

The function block inputs $\% \mathrm{SH}, ⿳ \mathrm{SL}$ and $\% \mathrm{SV}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ...QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Contacts

- C 010F to C 320F: Actual value $\geqq$ upper setpoint
- C 01FB to C 32FB: Actual value $\leqq$ Lower setpoint value
- $\mathrm{C} 01 Z \mathrm{t}$ to C 32 ZE : Actual value $=$ zero
- C 01CY to C 32CY: Value range exceeded


## Coils

- C 01C_ to C 32C_: counter coils, count with rising edge
- C 01D_ to C 32D_: count direction definition, status $0=$ count upwards, status $1=$ count downwards
- C 01RE to C 32RE: Reset actual value to zero
- C 01SE to C 32SE: accept defined actual value with rising edge.


## Memory requirement of the counter relay

The counter relay function block requires 52 bytes of memory plus 4 bytes per constant on the function block inputs.

## Retention

Counter relays can be operated with retentive actual values. The number of retentive counter relays can be selected in the SYSTEM $\rightarrow$ RETENTION menu.

The retentive actual value requires 4 bytes of memory.
If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

If MFD is started in RUN mode, the counter relay operates with the retentively saved actual value.

Function of the counter function block


Figure 101: Signal diagram of counter
1: counter coil C..C_
2: upper setpoint value $>\overline{\mathrm{SH}}$
3: preset actual value >>0
4: lower setpoint value $\%$.
5: counting direction, coil C..D_
6: accept preset actual value, coil C..SE

7: reset coil C..RE
8: contact (make contact) C..OF upper setpoint value reached, exceeded
9: contact (make contact) C..FB lower setpoint value reached, undershot

10: actual value equal to zero
11: out of value range

- Range A:
- The counter has the value zero.
- The contacts C..ZE (actual value equal to zero) and C..FB (lower setpoint value undershot) are active.
- The counter receives counter values and increases the actual value.
- C..ZE drops out as well as C..FB and also when the lower setpoint value is reached.
- Range B:
- The counter counts upwards and reaches the upper setpoint value. The "upper setpoint value reached" contact C..OF becomes active.
- Range C:
- The coil C..SE is briefly actuated and the actual value is set to the preset actual value. The contacts go to the respective position.
- Range D:
- The counting direction coil C..D_ is actuated. If counting pulses are present, downward count is initiated.
- If the lower setpoint value is undershot, the contact C..FB becomes active.
- Range E:
- The reset coil C..RE is activated. The actual value is set to zero.
- The contact C..ZE is active.
- Range F:
- The actual value goes outside the value range of the counter.
- The contacts become active according to the direction of the values (positive or negative).


## High-speed counters

MFD-Titan provides various high-speed counter functions. These counter function blocks are coupled directly to the digital inputs. The high-speed counter functions are only available with MFD-DC inputs.

The following functions are possible:

- Frequency counters, measure frequencies CF..
- High-speed counters, count high-speed signals CH..
- Incremental encoder counters, count two-channel incremental encoder signals CI..

The high-speed digital inputs are I1 to I4.
The following wiring rules apply:

- I1: CF01 or CH01 or CI01
- I2: CFO2 or CHO2 or CIO1
- I3: CF03 or CH03 or Cl02
- 14: CFO4 or CH04 or CIO2

Attention!
Every digital input I .. may only be used once by the CF, CH, Cl function blocks.

The incremental encoder requires an input pair.

## Example:

- I1: high-speed counter CH01
- 12: frequency counter CF02
- I3: incremental encoder channel A CI02
- 14: incremental encoder channel B CIO2

Example: function block list in the FUNCTION RELAYS menu:
CII
TFII
-HII
All function blocks access digital input I1.
Only CH01 supplies the correct value.

## Frequency counters

MFD-Titan provides four frequency counters which are CF01 to CF04. The frequency counters can be used for measuring frequencies. You can enter upper and lower threshold values as comparison values. The high-speed frequency counters are hardwired to the digital inputs I 1 to I .

The CF.. frequency counters operate independently of the cycle time.

## Counter frequency and pulse shape

The maximum counter frequency is 3 kHz .
The minimum counter frequency is 4 Hz .
The signals must be square waves. The mark-to-space ratio is $1: 1$.

## Measurement method

The pulses on the input are counted for one second irrespective of the cycle time, and the frequency is determined. The result of the measurement is made available as a value to the function block output CF..QV.

## Wiring of a counter

The following assignment of the digital inputs apply.

- I1 counter input for the counter CF01
- I2 counter input for the counter CF02
- I3 counter input for the counter CF03
- I4 counter input for the counter CF04

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram. Use a counter input for the $\mathrm{CF}, \mathrm{CH}, \mathrm{Cl}$ counters only once.

## Wiring of a frequency counter

You integrate a frequency counter into your circuit in the form of a contact and coil. The counter relay has different coils and contacts.


Figure 102: MFD-Titan circuit diagram with frequency counter


Parameter display and parameter set for frequency counter:

| CFOI | Frequency counter function block number 01 |
| :---: | :---: |
| -- | Does not appear in the parameter display |
| SH | Upper setpoint |
| SL | Lower setpoint |
| Q, | Actual value in RUN mode |

In the parameter display of a counter relay you change setpoint values and/or the preset value and the enable of the parameter display.

## Value range

The function block operates in the integer range from 0 to 5000
$1 \mathrm{kHz} 1=1000$

## Behaviour when value range is exceeded

The value range cannot be exceeded as the maximum measured value is less than the value range.

## Inputs

The function block inputs $\% \mathrm{MH}$ and $\% \mathrm{EL}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ...QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Contacts

- CF010F to CF04OF: Actual value $\geqq$ Upper setpoint
- CF01FB to CF04FB: Actual value $\leqq$ Lower setpoint
- CF01ZE to CF04ZE: Actual value $=$ Zero


## Coils

CF01EN to CF04EN: enable of the counter with coil status = 1.

Memory requirement of the frequency counter The frequency counter function block requires 40 bytes of memory plus 4 bytes per constant on the function block inputs.

## Retention

The frequency counter does not retain actual values, as the frequency is remeasured continuously.

Function of the frequency counter function block


Figure 103: Signal diagram of frequency counter
1: counter input I1 to I4
2: upper setpoint value $>\boldsymbol{S H}$
3: lower setpoint value $\% \mathrm{SL}$
4: enable CF..EN
5: contact (make contact) CF..OF upper setpoint value exceeded
6: contact (make contact) CF..FB lower setpoint value undershot
7: actual value equal to zero CF..ZE
$t_{g}$ : gate time for the frequency measurement

- The first measurements are made after the CF..EN enable signal has been activated. The value is output after the gate time has timed out.
- The contacts are set in accordance with the measured frequency.
- If the CF..EN enable signal is removed, the output value is set to zero.


## High-speed counters

MFD-Titan provides four high-speed up/down counters CH 01 to CH 04 for use. The high-speed frequency counters are hardwired to the digital inputs 11 to 14 . These counter relays allow you to count events independently of the cycle time. You can enter upper and lower threshold values as comparison values. The contacts will switch according to the actual value. To specify a start value, for example, counting from the value 1989, this can be implemented using a CH .. counter.

The CH.. counters operate independently of the cycle time.

## Counter frequency and pulse shape

The maximum counter frequency is 3 kHz .
The signals must be square waves. The mark-to-space ratio is $1: 1$.

## Wiring of a counter

The following assignment of the digital inputs apply.

- I1 counter input for the counter CH 01
- I2 counter input for the counter CH 02
- I3 counter input for the counter CH03
- I4 counter input for the counter CH 04

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram. Use a counter input for the $\mathrm{CF}, \mathrm{CH}, \mathrm{Cl}$ counters only once.

You integrate a counter into your circuit in the form of a contact and coil. The counter relay has different coils and contacts.


Figure 104: MFD-Titan circuit diagram with high-speed counter

| MHI |
| :---: |
| $\overline{\mathrm{EH}}$ |
| $\overline{\mathrm{EL}}$ |
| MU |
| OU |

Parameter display and parameter set for high-speed counters:

| EHII | High-speed counter function block number 01 |
| :---: | :---: |
| + | Appears in the parameter display |
| SH | Upper setpoint |
| SL | Lower setpoint |
| 5 s | Defined actual value (Preset) |
| Q ${ }^{\text {\% }}$ | Actual value in RUN mode |

In the parameter display of a counter relay you change setpoint values and/or the preset value and the enable of the parameter display.

## Value range

The function block operates in the integer range from -2147483648 to 2147483647.

## Behaviour when value range is exceeded

- The function block sets the switching contact CH..CY to status 1.
- The function block retains the value of the last valid operation.

Counter CH counts every rising edge on the counter input. If the value range is exceeded, the switching contact CH ..CY switches to status 1 for one cycle per rising edge detected.

## Inputs

The function block inputs $\rangle \mathrm{MH}, \mathrm{S} \mathrm{L}$ and $\rangle \mathrm{V}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ..QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01
$\rightarrow \quad \begin{aligned} & \text { The actual value is only cleared in RUN mode with a } \\ & \text { specific reset signal. }\end{aligned}$


## Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled


## Contacts

- CH01OF to CH04OF: Actual value $\geqq$ Upper setpoint
- CH01FB to CH04FB: Actual value $\leqq$ Lower setpoint
- CH01ZE to CH04ZE: Actual value = Zero
- CH01CY to CH04CY: Value range exceeded


## Coils

- CH01EN to CH04EN: enable of the counter
- CH01D to CH04D: count direction definition, Status 0 = count upwards, Status 1 = count downwards
- CH01RE to CH04RE: reset actual value to zero
- CH01SE to CH04SE: accept preset actual value with rising edge.


## Memory requirement of the high-speed counter

 The high-speed counter function block requires 52 bytes of memory plus 4 bytes per constant on the function block inputs.
## Retention

High-speed counter relays can be operated with retentive actual values. The number of retentive counter relays can be selected in the SYSTEM $\rightarrow$ RETENTION menu.

If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

If MFD is started in RUN mode, the counter relay operates with the retentively saved actual value.

Function of the high-speed counter function block


Figure 105: Signal diagram of high-speed counter
1: counter input I1 to I4
2: upper setpoint value $>\mathrm{SH}$
3: preset actual value $\geqslant \mathrm{BU}$
4: lower setpoint value $>\mathrm{SL}$
5: enable of the counter CH..EN
6: counting direction, coil CH..D

7: accept preset actual value, coil CH..SE
8: reset coil CH..RE
9: contact (make contact) CH..OF upper setpoint value reached, exceeded
10: contact (make contact) CH..FB lower setpoint value reached, undershot
11: contact (make contact) CH..ZE actual value equal to zero
12:out of value range

- Range A:
- The counter has the value zero.
- The contacts CH..ZE (actual value equal to zero) and CH..FB (lower setpoint value undershot) are active.
- The counter receives counter values and increases the actual value.
- CH..ZE drops out as well as CH..FB after the lower setpoint value is reached.
- Range B :
- The counter counts upwards and reaches the upper setpoint value. The contact "upper setpoint value" CH..OF becomes active.
- Range C:
- The coil CH..SE is briefly actuated and the actual value is set to the preset actual value. The contacts go to the respective position.
- Range D:
- The counting direction coil CH..D is actuated. If counting pulses are present, downward count is initiated.
- If the lower setpoint value is undershot, the contact CH..FB becomes active.
- Range E:
- The reset coil CH..RE is activated. The actual value is set to zero.
- The contact CH..ZE is active.
- Range F:
- The actual value goes outside the value range of the counter.
- The contacts become active according to the direction of the values (positive or negative).


## High-speed incremental encoder counters

MFD-Titan provides two high-speed incremental encoder counters Cl 01 and Cl 02 . The high-speed counter inputs are hardwired to the digital inputs $11,12,13$ and 14 . These counter relays allow you to count events independently of the cycle time. You can enter upper and lower threshold values as comparison values. The contacts will switch according to the actual value. You can use a CI.. counter if you wish to define a start value.

The CI.. counters operate independently of the cycle time.

## Counter frequency and pulse shape

The maximum counter frequency is 3 kHz .
The signals must be square waves. The mark-to-space ratio is 1:1. The signals on channels $A$ and $B$ must lead or lag by $90^{\circ}$. Otherwise the counting direction cannot be determined.

Double the number of pulses are counted as a result of the internal method of operation of the incremental encoder. The incremental encoder evaluates the rising and falling edges. This ensures that the pulse count is not affected by oscillation of a signal edge. If the number of pulses are required, divide the value by two.

## Wiring of a counter

The following assignment of the digital inputs apply:

- I1 counter input for the counter CI01 channel A
- I2 counter input for the counter CI01 channel B
- I3 counter input for the counter CIO2 channel A
- 14 counter input for the counter Cl 02 channel B

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.

Use a counter input for the CF, CH, Cl counters only once.
You integrate a counter into your circuit in the form of a contact and coil. The counter relay has different coils and contacts.


Figure 106: MFD-Titan circuit diagram with high-speed incremental encoder counter

| ET1 | + |
| :---: | :---: |
| \%H |  |
| SL |  |
| S0 |  |
| W\% |  |

Parameter display and parameter set for high-speed incremental encoder counter:

| EIT | High-speed incremental encoder counter function block number 01 |
| :---: | :---: |
| + | Appears in the parameter display |
| SH | Upper setpoint |
| SL | Lower setpoint |
| 50 | Defined actual value (Preset) |
| Qus | Actual value in RUN mode |

In the parameter display of a counter relay you change setpoint values and/or the preset value and the enable of the parameter display.

## Value range

The function block operates in the integer range from -2147483648 to 2147483647.

Each pulse is counted twice.
Example: value at $\mathrm{Cl} . . \mathrm{QV}>=42000$

The counter has counted 21000 pulses.

## Behaviour when value range is exceeded

- The function block sets the switching contact $\mathrm{Cl} . . \mathrm{CY}$ to status 1.
- The function block retains the value of the last valid operation.


## $\rightarrow$ Counter Cl counts every rising edge on the counter input. If the value range is exceeded, the switching contact Cl ..CY switches to status 1 for one cycle per rising edge detected.

## Inputs

The function block inputs $\% \mathrm{SH}, ⿳ \mathrm{SL}$ and $\overline{\mathrm{SV}}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ..QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01
$\rightarrow \quad \begin{aligned} & \text { The actual value is only erased in RUN mode with a } \\ & \text { selective reset signal. }\end{aligned}$


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Contacts

- CIO1OF to CI020F: Actual value $\geqq$ Upper setpoint
- CI01FB to CI02FB: Actual value $\leqq$ Lower setpoint
- CI01ZE to CIO2ZE: Actual value = Zero
- CI01CY to CI02CY: Value range exceeded


## Coils

- CI01EN to CIO2EN: Counter enable
- CI01RE to CIO2RE: Reset actual value to zero
- CIO1SE to CIO2SE: Accept preset actual value with rising edge.


## Memory requirement of the counter relay

 The high-speed counter function block requires 52 bytes of memory plus 4 bytes per constant on the function block inputs.
## Retention

High-speed counter relays can be operated with retentive actual values. The number of retentive counter relays can be selected in the SYSTEM $\rightarrow$ RETENTION menu.

If a counter relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

If MFD is started in RUN mode, the counter relay operates with the retentively saved actual value.

Function of the high-speed incremental encoder counter function block


Figure 107: Signal diagram of high-speed incremental encoder counter

1: counter input channel $A$
2: counter input channel B
3: upper setpoint value $>\boldsymbol{\mathrm { SH }}$
4: preset actual value $\%$ "
5: lower setpoint value $>\mathrm{SL}$
6: counter enable

7: accept preset actual value, coil CI..EN
8: reset coil CI..RE
9: contact (make contact) CI..OF upper setpoint value reached, exceeded

10: contact (make contact) CI..FB lower setpoint value reached, undershot
11: contact (make contact) CI..ZE actual value equal to zero
12: contact (make contact) CI..CY value range exceeded or undershot

- Range A:
- The counter counts upwards.
- The value leaves the lower threshold value and reaches the upper value.
- Range B:
- The count direction changes to a downward count.
- The contacts switch in accordance with the actual value.
- Range C:
- The enable signal is set to 0 . The actual value becomes 0 .
- Range D:
- The rising edge on the accept preset value coil sets the actual value to the preset value.
- Range E:
- The reset pulse sets the actual value to zero.
- Range F:
- The actual value goes outside the value range of the counter.
- The contacts become active according to the direction of the values (positive or negative).


## Comparators

Comparator function blocks allow you to compare constants and variables with one another.

The following comparisons are possible:

| Function block input |  | Function block input |
| :---: | :---: | :---: |
| > I 1 | Greater than | SIE |
|  | Equal to |  |
|  | Less than |  |



Figure 108: MFD-Titan circuit diagram with comparator


Parameter display and parameter set for the comparator function block:

| CFII | Function block analog value comparator number 02 |
| :---: | :---: |
| + | Appears in the parameter display |
| II1 | Comparison value 1 |
| 312 | Comparison value 2 |

## Inputs

The function block inputs 'II and II I can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal 111
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Contacts

- CP01LT to CP32LT, (less than)

Contact (make contact) switches to status 1, if the value on $\Rightarrow I \|$ is less than the value on $\% \mathrm{Im} ; \mathbf{I} \mid<\overline{\mathrm{I}}$.

- CP01EQ to CP32EQ, (equal to)

Contact (make contact) switches to status 1 , if the value on


- CP01GT to CP32GT, (greater than)

Contact (make contact) switches to status 1 , if the value at $\rangle I \|$ is greater than the value at $\rangle I \mathbb{Z} ; \mathbf{I I}>\boldsymbol{I} \mathbb{Z}$.

Memory requirement of the counter relay
The comparator function block requires 32 bytes of memory plus 4 bytes per constant on the function block inputs.

## Text output function block

The MFD device provides 32 function blocks that operate in an easy 800 as text output function blocks. These function blocks work in the MFD device as contacts and coils in the same way as in an easy800. In the MFD device, texts, actual value output and setpoint entry are implemented using the appropriate visualization elements.

The text function block was adopted from the easy800 so that the circuit diagram is compatible. This simplifies the processing of easy 800 programs. easy 800 programs with text function blocks can be loaded directly onto the MFD-Titan, either from the memory card or from EASY-SOFT-PRO. The contacts and coils are processed in the same way as in an easy800.

However, texts are not output.
The function block requires the entire memory, even if no texts have been transferred.

Do not use the text function block on the MFD device. This will use up memory unnecessarily with unused functions!


Figure 109: MFD-Titan circuit diagram with a text output function block

## Contacts

A contact has been assigned to the text output function block.
D01Q1 to D32Q1, text function block is active.

## Coils

D01EN to D32EN, enable of the text function block

## Memory requirement of the text output function block

The text output function block function block requires 160 bytes of memory. This is irrespective of the text size.

## Data function block

The data function block allows you to selectively save a value. Setpoint values for the function block can be saved in this manner.



Figure 110: MFD-Titan circuit diagram with data function block:


- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Output

The function block output QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Contacts

DB01Q1 to DB32Q1
Contact (make contact) DB..Q1 switches to status 1 if the trigger signal is set to 1 .

## Coils

DB01T_ to DB32T_, acceptance of the value at >11 with a rising edge.

## Memory requirement of the data function block

 The data block function block requires 36 bytes of memory plus 4 bytes per constant at the function block input.
## Retention

Data function blocks can be operated with retentive actual values. The quantity can be selected in the SYSTEM $\rightarrow$ RETENTION menu.

## Function of the data function block



Figure 111: Signal diagram of data function block
1: value at input $>11$
2: trigger coil DB..T_
3: value on DB..QV>
$\rightarrow$
The value at input $\$ \mathbf{I} \mid$ is only transferred with a rising trigger edge to an operand (e.g.: MD42, QA01) on output QUP. Output QV retains its value until it is overwritten.

## PID controller

MFD-Titan provides 32 PID controllers DC01 to DC32. The PID controllers allow you to implement closed-loop control functions.


## Caution!

A knowledge of closed-loop control is required in order to use the PID controllers.

The control system must be familiar so that the PID controller can function correctly.

Three separate manipulated variables can be output. One manipulated variable can be output via an analog output. Two manipulated variables can be processed via two pulse-width modulated outputs. It is therefore useful to run up to three closed-loop controllers per program simultaneously. Projects can be structured by selecting the controller number.

Example: Project with 3 devices
Program 1: Controller DC 10, 11
Program 2: Controller DC20, 21 and 22
Program 3: Controller DC30

## Wiring a PID controller

You integrate a PID controller in your circuit as a contact and coil.


Figure 112: MFD-Titan circuit diagram with PID controller

| OMIE UPF | $t$ | Parameter display and parameter set for PID controller: |  |
| :---: | :---: | :---: | :---: |
| 11 |  | cial | PID controller function block number 02 |
| SF |  | UNTP | Unipolar mode |
| TN |  | + | Appears in the parameter display |
| TV |  | >I1 | Setpoint of PID controller |
| TIL |  | \% I | Actual value of PID controller |
| W\% |  | ) KF | Proportional gain $\mathrm{K}_{p}$ |
|  |  | > TN | Reset time $\mathrm{T}_{\mathrm{n}}$ |
|  |  | >TV | Rate time $\mathrm{T}_{\mathrm{v}}$ |


| TTE |  | Scan time |
| :--- | :--- | :--- |
|  |  | Manual manipulated variable |
|  |  | Manipulated variable |

In the parameter display of a PID controller you set the operating mode, the setpoints and enable the parameter display.

## Operating modes of the PID controller

| Parameter | Manipulated variable is output as |
| :--- | :--- |
| UNF | Unipolar 12-bit value 0 to +4095 |
| EIF | Bipolar 13-bit value (signed 12-bit value) -4096 to +4095 |

## Inputs

 and 㣿 can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ...QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01

Value range for inputs and outputs

|  |  | Value range | Resolution/unit |
| :---: | :---: | :---: | :---: |
| $>11$ | Setpoint of PID controller | -32768 to +32767 |  |
| $>12$ | Actual value of PID controller, | -32 768 to +32767 |  |
| >KP | Proportional gain $\mathrm{K}_{\mathrm{p}}$ | 0 to 65535 | in -- /\% |
| $>$ TN | Reset time $\mathrm{T}_{\mathrm{n}}$ | 0 to 65535 | in 100/ms |
| >TV | Rate time $\mathrm{T}_{\mathrm{V}}$ | 0 to 65535 | in $100 / \mathrm{ms}$ |
| >TC | Scan time | 0 to 65535 | in $100 / \mathrm{ms}$ |
| >MV | Manual manipulated variable | -4096 to +4095 |  |
| QV> | Manipulated variable | $\begin{aligned} & 0 \text { to } 4095 \text { (unipolar) } \\ & -4096 \text { to }+4095 \text { (bipolar) } \end{aligned}$ |  |

Example:

|  |  | Value at input | Value processed in the function block. |
| :---: | :---: | :---: | :---: |
| >KP | Proportional gain $\mathrm{K}_{\mathrm{p}}$ | 1500 | 15 |
| $>$ TN | Reset time $\mathrm{T}_{\mathrm{n}}$ | 250 | 25 s |
| >TV | Rate time $\mathrm{T}_{\mathrm{v}}$ | 200 | 20 s |
| >TC | Scan time | 500 | 50 s |
| >MV | Manual manipulated variable | 500 | 500 |

Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled


## Contacts

DC01LI to DC32LI, value range of the manipulated variable exceeded.

## Coils

- DC01EN to DC32EN: Enable PID controller;
- DC01EP to DC32EP: Activate proportional component;
- DC01EI to DC32EI: Activate integral component;
- DC01ED to DC32ED: Activate the differential component;
- DC01SE to DC32SE: Activate the manual manipulated variable


## Memory requirement of the PID controller

 The PID controller function block requires 96 bytes of memory plus 4 bytes per constant on the function block input.
## Function of the PID controller function block

The PID controller works on the basis of the PID algorithm. According to this, the manipulated variable $Y(t)$ is the result of the calculation of the proportional component, an integral component and a differential component.

The PID controller must be enabled so that it can work. Coil DC..EN is active. If coil DC..EN is not active, the entire PID controller is deactivated and reset. The manipulated variable is set to zero.

The corresponding coils for the P, I and D components must be active.

Example: If only coils DC..EP and DC..EI are activated, the controller operates as a PI controller.

The device calculates the manipulated variable every time the scan time $T_{c}$ has elapsed. If the scan time is zero, the manipulated variable is calculated every cycle.

Equation of PID controller:
$Y(t)=Y_{P}(t)+Y_{I}(t)+Y_{D}(t)$
$Y(t)=$ calculated manipulated variable with scan time $t$
$Y_{P}(t)=$ Value of the proportional component of the manipulated variable with scan time $t$
$Y_{I}(t)=$ Value of the integral component of the manipulated variable with scan time $t$
$Y_{D}(t)=$ Value of the differential component of the manipulated variable with scan time $t$

The proportional component in the PID controller The proportional component $Y_{p}$ is the product of the gain $\left(K_{p}\right)$ and the control difference (e). The control difference is the difference between the setpoint ( $\mathrm{X}_{5}$ ) and the actual value ( $\mathrm{X}_{\mathrm{i}}$ ) at a specified scan time. The equation used by the device for the proportional component is as follows:
$\mathrm{Y}_{\mathrm{p}}(t)=\mathrm{K}_{\mathrm{p}} \times\left[\mathrm{X}_{\mathrm{s}}(t)-\mathrm{X}_{\mathrm{i}}(t)\right]$
$K_{p}=$ Proportional gain
$\mathrm{X}_{\mathrm{s}}(t)=$ Setpoint with scan timet
$\mathrm{X}_{\mathrm{i}}(t)=$ Actual value with scan time $t$

## The integral component in the PID controller

The integral component $Y_{1}$ is proportional to the sum of the control difference over time. The equation used by the device for the integral component is as follows:
$Y_{I}(t)=K_{p} \times T_{C} / T_{n} \times\left[X_{s}(t)-X_{i}(t)\right]+Y_{I}(t-1)$
$K_{p} \quad=$ Proportional gain
$\mathrm{T}_{\mathrm{c}}=$ Scan time
$\mathrm{T}_{\mathrm{n}} \quad=$ Integration time (also known as reset time)
$X_{s}(t)=$ Setpoint with scan timet
$\mathrm{X}_{\mathrm{i}}(t)=$ Actual value with scan time $t$
$Y_{\|}(t-1)=$ Value of the integral component of the manipulated variable with scan timet -1

## The differential component in the PID controller

The differential component $Y_{D}$ is proportional to the change in the control difference. So as to avoid step changes or jumps in the manipulated variable caused by the differential behaviour when the setpoint is changed, the change of the actual value (the process variable) is calculated and not the change in the control difference. This is shown in the following equation:
$Y_{D}(t)=K_{p} \times T_{V} / T_{C} \times\left(X_{i}(t-1)-X_{i}(t)\right)$
$K_{p} \quad=$ Proportional gain
$\mathrm{T}_{c} \quad=$ Scan time
Tv = Differential time of the control system (also called the rate time)
$X_{i}(t) \quad=$ Actual value with scan time $t$
$X_{i}(t-1)=$ Actual value with scan time $t-1$
Scan time $T_{c}$
Scan time $\mathrm{T}_{C}$ determines the duration of the interval in which the function block is called by the operating system for processing. The value range is between 0 and 6553.5 s .

If the value 0 is set, the cycle time of the device is the pause time between the function block calls.

## $\rightarrow$

The device cycle time varies according to the length of the program. With a scan time of 0 s , this may cause an irregular control response.

## $\rightarrow$

Use the Set cycle time function block ( $\rightarrow$ page 256) in order to keep the cycle time of the device constant.

## Manual mode of the PID controller

A value must be present at the $\% \mathbb{H V}$ input in order to set the manipulated variable directly. If the coil DC..SE is activated, the value at ZW W is transferred as manipulated variable QU. This value is present for as long as the DC..SE coil is activated or the value at the 沺 input is changed. If coil DC..SE is deactivated, the control algorithm is reactivated.

$$
\longrightarrow \quad \begin{aligned}
& \text { Extreme changes in the manipulated variable can occur } \\
& \text { when the manual manipulated variable is transferred or } \\
& \text { deactivated. }
\end{aligned}
$$

> $\rightarrow \quad$ If the function block is running in UNI (unipolar) mode, a negative signed manipulated variable value will be output.

## Signal smoothing filter

MFD provides 32 signal smoothing filters FT01 to FT32. The function block allows you to smooth noisy input signals.

## Wiring a signal smoothing filter

You can integrate a signal smoothing filter into your circuit as a coil.


Figure 113: MFD-Titan circuit diagram with smoothing function block

| FT11 | + |
| :---: | :---: |
| 7I |  |
| \%TE |  |
| SF |  |
| W0\% |  |

## Parameter display and parameter set for the FT

 function block:| FTil | FT PT1 signal smoothing filter function block, number 17 |
| :---: | :---: |
| + | Appears in the parameter display |
| \$I1 | Input value |
| \% TG | Recovery time |
| SFF | Proportional gain |
| QU) | Output value, smoothed |

$\rightarrow$
The recovery time $T_{g}$ is the time in which the output value is calculated.

The recovery time $\mathrm{T}_{\mathrm{g}}$ must be set so that it is an integer multiple of the cycle time or controller scan time $\mathrm{T}_{\mathrm{C}}$.

## Inputs

The function block inputs $\bar{\prime} 11, S_{12}$ and $\overline{\prime K}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Output

The function block output $W$ " can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01

Value range for inputs and outputs

|  |  | Value range | Resolution/unit |
| :---: | :---: | :---: | :---: |
| SI1 | Input value of the function block | -32 768 to +32767 |  |
| TG | Recovery time $\mathrm{Tg}_{\mathrm{g}}$ | 0 to 65535 | in 100/ms |
| 3 FF | Proportional gain $\mathrm{K}_{\mathrm{p}}$ | 0 to 65535 | in -- /\% |
| W0\% | Output value | -32 768 to +32767 |  |

Example:

|  |  | Value at input |
| :--- | :--- | :--- |
| YTG Value processed <br> in the function <br> block.  <br> Recovery time $T_{g}$ Proportional gain $K_{p}$ 250 | 1500 | 25 s |

Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled

Coil
FT01EN to FT32EN, function block enable
Memory requirement of the FT function block
The FT function block requires 56 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the signal smoothing filter function block

The signal smoothing filter must be enabled so that it can work. Coil FT..EN is active. If coil FT..EN is not active, the entire function block is deactivated and reset. The output value is set to zero.

If the function block is called for the first time, the output value is initialised with the input value when the device is started or after a reset. This speeds up the startup behaviour of the function block.

The function block updates the output value every time recovery time $\mathrm{T}_{\mathrm{g}}$ expires.

The function block operates according to the following equation:
$Y(t)=\left[T_{a} / T_{g}\right] \times\left[K_{p} \times x(t)-Y(t-1)\right]$
$Y(t) \quad=$ Calculated output value for scan time $t$
$\mathrm{T}_{\mathrm{a}} \quad=$ Scan time
$\mathrm{T}_{\mathrm{g}} \quad=$ Recovery time
$K_{p} \quad$ Proportional gain
$\mathrm{x}(t) \quad=$ Actual value with scan time $t$
$\mathrm{Y}(t-1)=$ Output value with scan time $t-1$
Scan time:
Scan time $T_{a}$ depends on the set recovery time value.

| Recovery time $\mathrm{T}_{\mathrm{g}}$ | Scan time $\mathrm{T}_{\mathrm{a}}$ |
| :--- | :--- |
| 0.1 s to 1 s | 10 ms |
| 1 s to 6553 s | $\mathrm{~T}_{\mathrm{g}} \times 0.01$ |

## GET, fetch a value from the network

The function block allows you to selectively read (get) a 32 bit value from the network. The GET function block fetches data which another station has made available on the easy-NET network with a PUT function block.

## 

Figure 114: MFD-Titan circuit diagram with GET function block

##  W\%

Parameter display and parameter set for the GET function block:

| GT01 | GET function block (fetch a value from the network), number 01 |
| :---: | :---: |
| 02 | Station number from which the value is sent. Possible station number: 01 to 08 |
| 20 | Send function block (PT 20) of the sending station. Possible function block number: 01 to 32 |
| + | Appears in the parameter display |
| Qv, | Actual value from the network |

## Output

The function block output W ? can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Contacts

GT01Q1 to GT32Q1
Contact (make contact) GT..Q1 switches to status 1 if a new value transferred on the easy-NET network is present.

## Memory requirement of the GET function block

The GET function block requires 28 bytes of memory.

## GET diagnostics

The GET function block only functions when the easy-NET network is functioning correctly ( $\rightarrow$ Section "Signs of life of the individual stations and diagnostics", Page 346).

## Function of the GET function block



Figure 115: Signal diagram of GET function block
1: GT..Q1
2: value on GT..QV>
$\rightarrow$
The GET function blocks are assigned the value 0 when the power supply is switched on.

## Seven-day time switch

MFD-Titan is equipped with a real-time clock which you can use in the circuit diagram as a 7 -day time switch and a year time switch.

The procedure for setting the time is described under
Section "Setting date, time and daylight saving time" on Page 369.

MFD provides 32 seven-day time switches HW01 to HW32 for a total of 128 switching times.

Each time switch has four channels which you can use to set four on and off times. The channels are set via the parameter display.

The time is backed up in the event of a power failure and continues to run, although the time switch relays will no longer switch. The contacts are kept open when deenergized. Refer to Chapter "Technical data", Page 409 for information on the buffer time.

## Wiring of a 7-day time switch

A 7-day time switch is integrated into the circuit diagram as a contact.


Figure 116: MFD-Titan circuit diagram with 7-day time switch

| HW14 4 | H | $t$ |
| :---: | :---: | :---: |
| 勺W4 |  |  |
| SMy |  |  |
| \% |  |  |
| SOFF' |  |  |

Parameter display and parameter set for the 7-day time switch HW:

| HW14 | 7-day time switch function block number 14 |
| :---: | :---: |
| H | Time switch channel A |
| + | Appears in the parameter display |
| 20Y1 | Day 1 |
| 20Y2 | Day 2 |
| 3 ON | On time |
| OOFF | Off time |

## Channels

4 channels are available per time switch, channels $A, B, C$ and $D$. These channels all act on the contact of the 7-day time switch.

## Day 1 and day 2

Either the time period acts from day 1 to day 2, e.g. Monday to Friday, or for one day only.

Monday $=$ MO, Tuesday $=$ TU, Wednesday $=$ WE, Thursday
$=$ TH, Friday $=$ FR, Saturday $=$ SA, Sunday $=$ SU,
Time
00:00 to 23:59

## Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled


## Contacts

HW01Q1 to HW32Q1

## Memory requirement of the 7-day time switch

 The 7-day time switch function block requires 68 bytes of memory plus 4 bytes per channel used.
## Function of the 7-day time switch

The switching points are defined according to the parameters entered.

MO to FR: on the weekdays Mo, Tu, We, Th, Fr
ON 10:00, OFF 18:00: on and off switching times for the individual days of the week.

MO: every Monday
ON 10:00: switch on time
SA: every Saturday
OFF 18:00: switch off time

## Switching on working days

Time switch HW01 switches on Monday to Friday between 6:30 and 9:30 and between 17:00 and 22:30.

| HWU1 | H | + | HuI | E |  | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOY | 10 |  | 3 OV | Ho |  |  |
| Sova | Fit |  | SOV | FF |  |  |
| 30 N | -16:30 |  | 30 O |  | 1:10 |  |
| SOFF | 14:30 |  | SOF |  | 2 |  |

## Switching at the weekend

Time switch HW02 switches on at 16:00 on Friday and switches off at 6:00 on Monday.



Figure 117: Signal diagram of "weekend"

## Overnight switching

Time switch HW03 switches on overnight at 22:00 Monday and switches off at 6:00 on Tuesday.

```
HWOG[ +
COM HO
OOV
0N 2a:口0
SOF 砳:0|
```



Figure 118: Signal diagram for night switching
$\rightarrow \quad \begin{aligned} & \text { If the Off time is before the On time, MFD will switch off } \\ & \text { on the following day. }\end{aligned}$

## Time overlaps

The time settings of a time switch overlap. The clock switches on at 16:00 on Monday, whereas on Tuesday and Wednesday it switches on at 10:00. On Monday to Wednesday the switching-off time is $22: 00$.



Figure 119: Signal diagram of overlaps
$\rightarrow$
Switch-on and switch-off times are always based on the channel which switches first.

Response in the event of a power failure
The power is removed between 15:00 and 17:00. The relay drops out and remains off, even after the power returns, since the first switching-off time was at 16:00.

$\rightarrow$
When switched on, MFD always updates the switching state on the basis of all the available switching time settings.

## 24 hour switching

The time switch is to switch for 24 hours. Switch-on time at 0:00 on Monday and switch-off time at 0:00 on Tuesday.


## Year time switch

MFD-Titan is equipped with a real-time clock which you can use in the circuit diagram as a 7 -day time switch and a year time switch.

## $\rightarrow$

The procedure for setting the time is described under Section "Setting date, time and daylight saving time" on Page 369.

MFD provides 32 year time switches HY01 to HY32 for a total of 128 switching times.

Each time switch has four channels which you can use to set four on and off times. The channels are set via the parameter display.

The time and date are backed up in the event of a power failure and continue to run. However, the time switch relays will no longer continue to switch. The contacts are kept open when de-energized. Refer to Chapter "Technical data", Page 409 for information on the buffer time.

## Wiring of a year time switch

A year time switch is integrated into the circuit diagram as a contact.


Figure 120: MFD-Titan circuit diagram with year time switch


Parameter display and parameter set for the year time switch HY:

| HYJ | Year time switch function block number 30 |
| :---: | :---: |
| E | Time switch channel B |
| + | Appears in the parameter display |
| 3 ON | Switch on time |
| SOFF | Switch off time |

## Channels

4 channels are available per time switch, channels A, B, C and D . These channels all act on the contact of the year time switch.

## Date

Day.Month.Year: DD.MM. YY

## Example: 11.11.02

## On/off switch points

ON: switch on time
OFF: switch off time year. Otherwise the year time switch will not function.

## Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled


## Contacts

HY01Q1 to HY32Q1

## Memory requirement for the year time switch

The year time switch function block requires 68 bytes of memory plus 4 bytes per channel used.

## Function of the year time switch function block

The year time switch can operate with ranges, individual days, months, years or combinations.

## Years

ON: 2002 to OFF: 2010 means:
Switch on at 00:00 on 01.01.2002 00 and switch off at $00: 00$ on the 01.01.2011.

## Months

ON: 04 to OFF: 10 means:
Switch on at 00:00 on 1st April and switch off at 00:00 on 1st November

## Days

ON: 02 to OFF: 25 means:
Switch on at 00:00 on the 2nd and switch off at 00:00 on the 26th

## Rules for the year time switch

The contact switches in the defined years (ON to OFF), the defined months ( ON to OFF) and in the days entered (ON to OFF).

Time ranges must be input with two channels, one for ON and one for OFF.

Overlapping channels:
The first ON date switches on and the first OFF date switches off.

Avoid incomplete entries. It hinders transparency and leads to unwanted functions.

| HYOI | H | + |
| :---: | :---: | :---: |
| 0 N | -- |  |
|  | -- |  |



| HYOI | A | + |
| :---: | :---: | :---: |
| OOH |  |  |
| PDFF |  |  |



## Example 1

Year range selection
The year time switch HYO1 should switch on at 00:00 on January 12002 and remain on until 23:59 on 31 December 2005.

## Example 2

Month range selection
The year time switch HYO1 should switch on at 00:00 on 01st March and remain on until 23:59 on 30th September.

## Example 3

Day range selection
The year time switch HY01 should switch on at 00:00 on the 1 st of each month and remain on until $23: 59$ on the 28th of each month.

## Example 4

Holiday selection
The year time switch HY01 should switch on at 00:00 on the 25.12 each year and remain on until $23: 59$ on 26.12.
"Christmas program"

## Example 5

Time range selection
The year time switch HYO1 should switch on at 00:00 on 01.05 each year and remain on until 23:59 on the 31.10. "Open air season"


Example 6
Overlapping ranges

The year time switch HY01 channel A switches on at $00: 00$ on the 3rd of the months 5, 6, 7, 8, 9, 10 and remains on until 23:59 on the 25th of these months.


The year time switch HY01 channel B switches on at $00: 00$ on the 2 nd in the months $6,7,8,9,10,11,12$ and remains on until 23:59 on 17th of these months.

Total number of channels and behaviour of the contact HY01Q1:
The time switch will switch on at 00:00 from the 3rd May and off at 23:59 on the 25th May.
In June, July, August, September, October, the time switch will switch on at 00:00 on the 2nd of the month and switch off at 23:59 on the 17th.
In November and December, the time switch will switch on at 00:00 on the 2nd of the month and switch off at 23:59 on the 17 th .

## Value scaling

MFD provides 32 value scaling function blocks LS01 to LS32. The function block enables you to convert values from one value range to another one. In this way it is possible to reduce or increase values.

## Wiring of a scaling function block

You can integrate a value scaling function block into your circuit as a coil.


Figure 121: MFD-Titan circuit diagram with LS value scaling

| LEl 1 | + |
| :---: | :---: |
| \%II |  |
| \% $\times 1$ |  |
| $\cdots \mathrm{Yi}$ |  |
| \% |  |
| YVE |  |
| QW |  |

Parameter display and parameter set for the LS function block:

| Ls? 1 | LS value scaling function block number 27 |
| :---: | :---: |
| + | Appears in the parameter display |
| >I1 | Input value, actual value source range |
| $\% \mathrm{Kl}$ | Lower value of source range |
| 3 Vi | Lower value of target range |
| \% XL | Upper value of source range |
| 3V2 | Upper value of target range |
| QU) | Output value, scaled |

## Inputs

 can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Output

The function block output QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01

Value range for inputs and outputs

|  |  | Value range |
| :---: | :---: | :---: |
| >II | Input value of the function block | -2147483648 to +2147483647 |
| $3 \mathrm{X1}$ | Lower value of source range |  |
| 3 | Lower value of target range |  |
| 3V1 | Upper value of source range |  |
| P\% | Upper value of target range |  |
| Qv) | Output value |  |

## Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled


## Coil

VC01EN to VC32EN, function block enable

## Memory requirement of the LS function block

The LS function block requires 64 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the function block

The scaling function block must be enabled so that it can work. Coil LS..EN is active. If coil LS..EN is not active, the entire function block is deactivated and reset. The output value is set to zero.

The function block operates according to the following equation:
$Y(X)=X \times \frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}+\frac{X_{2} \times Y_{1}-X_{1} \times Y_{2}}{X_{2}-X_{1}}$
$Y(x)=$ Actual output value of target range
$X \quad=$ Actual input value of source range
$X_{1}=$ Lower value of source range
$X_{2}=$ Upper value of source range
$Y_{1}=$ Lower value of target range
$\mathrm{Y}_{2}=$ Upper value of target range
(1)


Figure 122: Value scaling function block - Reduce value range
(1) Source range
(2) Target range
(1)


Figure 123: Value scaling function block - Increase value range
(1) Source range
(2) Target range

## Example 1:

The source range is a 10-bit value, source is the analog input IA01.

The target range has 12 bits.

| LSU |  | + |
| :---: | :---: | :---: |
| \%I | IFIU |  |
| SX | - |  |
| YY | 【 |  |
|  | 1133 |  |
| Ye | 41195 |  |
| W0\% |  |  |

Parameter display and parameter set for the LS01 function block:

The actual value at the analog input IA01 is 511 .
The scaled output value is 2045 .
Example 2:
The source range has 12 bits.
The target range has 16 signed bits.
$\rangle I \|=$ DC01QV
$\Rightarrow \mathrm{XI}=0$
$\Rightarrow \mathrm{XZ}=4095$
$\rangle Y_{1}=-32768$
YU2 = +32767
The actual value at the analog input DC01QV 1789. The scaled output value is -4137 .

## Jumps

Jumps can be used to optimise the structure of a circuit diagram or to implement the function of a selector switch. For example, jumps can be used to implement whether manual/automatic mode, or different machine programs are to be selected.

Jumps consist of a jump location and a jump destination (label).

| Circuit diagram symbols for jumps |  |
| :---: | :---: |
| Contact |  |
| Make contact ${ }^{1)}$ | : |
| Numbers | 01 to 3 2 |
| Coils | ${ }^{[1}$ |
| Numbers | 01 to 3 l |
| Coil function | [. J, J, R, ! |

## Function

If the jump coil is triggered, the rungs coming directly after it will not be processed. The states of the coils before the jump will be retained, unless they are overwritten in rungs that were not missed by the jump. Jumps are always made forwards, i.e. the jump ends on the first contact with the same number as that of the coil.

- Coil = jump when 1
- Contact only at the first left-hand contact position = Jump destination

The Jump contact point will always be set to 1

Backward jumps are not possible with MFD due to the way it operates. If the jump label does not come after the jump coil, the jump will be made to the end of the circuit diagram. The last rung will also be skipped.

If a jump destination is not present, the jump is made to the end of the circuit diagram.

Multiple use of the same jump coil and jump contact is possible as long as this is implemented in pairs, i.e.:
Coil 4 : $: 1 /$ jumped range/Contact:1,
Coil $\mathbb{N}: 1 /$ jumped range/Contact:1 etc.

## Attention!

If rungs are skipped, the states of the coils are retained. The time value of timing relays that have been started will continue to run.

## Power flow display

Jumped ranges are indicated by the coils in the power flow display.

All coils after the jump coil are shown with the symbol of the jump coil.

## Example

A selector switch allows two different operations to be set.

- Sequence 1: Switch on Motor 1 immediately.
- Sequence 2: Switch on Guard 2, Wait time, then switch on Motor 1.

Contacts and relays used:

- I1 Sequence 1
- 12 Sequence 2
- 13 Guard 2 moved out
- 112 Motor-protective circuit-breaker switched on
- Q1 Motor 1
- Q2 Guard 2
- T II Wait time 30.00 s , on-delayed
-     - ! Text "motor-protective circuit-breaker tripped"

Circuit diagram: Power flow display: I 01 selected:


Range from jump label 1 processed.
Jump to label 8.
Range to jump label 8 skipped.

Jump label 8, circuit diagram processed from this point on.

## Master reset

The master reset function block allows you to reset the state of the markers and all outputs to the 0 state with a single command. Depending on the operating mode of this function block, it is possible to reset the outputs only, or the markers only, or both. 32 function blocks are available.

## 

Figure 124: MFD-Titan circuit diagram with master reset function block
WFIG $\quad+$

Parameter display and parameter set for the master reset function block:

| Mr1\% | Master reset function block number 16 |
| :---: | :---: |
| Q | Reset outputs mode |
| + | Appears in the parameter display |

## Operating modes

- Q: Acts on the outputs Q..., *Q.., S.., *S.., *SN... QA01; *: network station address
- M: acts on the marker range MD01 to MD48.
- ALL: acts on Q and M.


## Contacts

MR01Q1 to MR32Q1
The contact switches on the marker if the trigger coil MR..T has the 1 state.

## Coils

MR01T to MR32T: trigger coils

## Memory requirement of the data function block

The master reset function block requires 20 bytes of memory.

## Function of the data master reset

The outputs or the markers are set to the 0 state in accordance with the operating mode when a rising edge is detected on the trigger coil.

## $\rightarrow$

The master reset function block should be used as the last function block in a program so that all data ranges are cleared reliably. Otherwise subsequent function blocks may overwrite the data ranges.

The contacts MR01Q1 to MR32Q1 assume the state of their own trigger coil.

## Numerical converters

MFD-Titan provides 32 numerical converters NC01 to NC32.
A numerical converter function block enables you to convert $B C D$ coded values to decimal values or decimal coded values to $B C D$ coded values.

## Wiring of a numerical converter

A numerical converter in the circuit diagram only has the enable coil.


Figure 125: MFD-Titan circuit diagram with numerical converter


Parameter display and parameter set for the numerical converter:

| NCOE | Numerical converter function block number 02 |
| :---: | :---: |
| ECO | Convert BCD code to decimal value mode |
| + | Appears in the parameter display |
| \$I1 | Input value |
| W\% | Output value |

In the parameter display of a numerical converter you can change the mode and the enable of the parameter display.

Numerical converter modes

| Parameter | Mode |  |
| :--- | :--- | :--- |
| ECD | Convert BCD coded values to decimal values |  |
|  | Convert decimal value to BCD coded values |  |
|  | Number range | Number <br> system |
|  | $\frac{-161061273 \text { to }+161061273}{-9999999 \text { to }+9999999}$ | BCD |


| BCD code | Decimal value |
| :---: | :---: |
| 0001 | 1 |
| 0010 | 2 |
| 0011 | 3 |
| 0100 | 4 |
| 0101 | 5 |
| 0110 | 6 |
| 0111 | 7 |
| 1000 | 8 |
| 1001 | 9 |
| 1010 to 1111 | Not permissible |
| 10000 | 10 |
| 10001 | 11 |

The $B C D$ code only allows the number range $0_{\text {hex }}$ to $9_{\text {hex }}$. The number range $A_{\text {hex }}$ to $F_{\text {hex }}$ cannot be represented. The NC function block converts the impermissible range to 9 .

## Inputs

The function block input \$II can be assigned the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Actual value ...QV>

The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Coil

NC01EN to NC32EN: enable coil.

## Memory requirement of the numerical converter

The numerical converter function block requires 32 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the numerical converter function block

The numerical converter function block must be enabled so that it can work. Coil NC..EN is active. If coil NC..EN is not active, the entire function block is deactivated and reset. The output value is set to zero.

## BCD mode

The $B C D$ value at $\$ I \|$ is provided in decimal format at the input. The binary value is formed from this. The binary value is interpreted as a BCD value. Values greater than 9 (1001) are set to the value 9 . The $B C D$ value is output as a decimal value at the output $\mathrm{QV}>$.

Example 1:
Input value $>11$ : $+9_{\text {dec }}$
Binary value: 1001
Decimal value QV>: + 9
Example 2:
Input value>11: $+14_{\text {dec }}$
Binary value: 1110
Decimal value QV>: + 9

The highest binary value represented in BCD is $1001=9$. All other higher binary values from 1010 to 1111 are output as 9 . This behaviour is correct as BCD encoders normally don't generate these values.

## Example 3:

Input value $>11$ : $1_{\text {dec }}$
Binary value: 00010011
Decimal value QV>: 13
Example 4:
Input value>11: $161061273_{\mathrm{dec}}$
Binary value: 1001100110011001100110011001
Decimal value QV>: 9999999
Example 5:
Input value>11: -61673dec
Binary value: 10000000000000001111000011101001
Decimal value QV>: -9099
$\rightarrow \quad$ Bit 32 is the sign bit. Bit $32=1 \rightarrow$ Sign $=$ Minus.

## Example 6:

Input value $>11: 2147483647_{\text {dec }}$
Binary value: 01111111111111111111111111111111
Decimal value QV>: 9999999
$\rightarrow$
Values greater than 161061273 are output as 9999999. Values less than - 161061273 are output as -9999999. The working range of the function block has been exceeded.

## BIN mode

The decimal value is assigned to input $\$ I \mid$. The decimal value is represented as a BCD coded value. The BCD coded value is interpreted as a hexadecimal value and output as a decimal value at output $\mathrm{QV}>$.

Example 1:
Input value $>11$ : +7 dec
BCD binary value: 0111
Hexadecimal value: 0111
Decimal value QV>: + 7
Example 2:
Input value $>11$ : $+11_{\text {dec }}$
BCD binary value: 00010001
Hexadecimal value: 00010001
Decimal value $\mathrm{QV}>$ : $+17(1+16)$
Hexadecimal value:
Bit 0 has the value 1 .
Bit 4 has the value 16
Total: Bit 0 plus Bit $4=17$
Example 3:
Input value $>11$ : $19_{\text {dec }}$
BCD binary value: 00011001
Hexadecimal value: 00011001
Decimal value QV>: $25(1+8+16)$
Example 4:
Input value >11: 9999999 dec
BCD binary value: 1001100110011001100110011001
Hexadecimal value: 1001100110011001100110011001
Decimal value QV>: 161061273
Example 5:
Input value >11:-61673 dec
BCD binary value:
10000000000001100001011001110011
Hexadecimal value:
10000000000001100001011001110011
Decimal value QV>: -398963
$\rightarrow \quad$ Bit 32 is the sign bit. Bit $32=1 \rightarrow$ Sign $=$ Minus.
Example 6:
Input value >11: $2147483647_{\text {dec }}$
BCD binary value:
01111111111111111111111111111111

Hexadecimal value:
01111111111111111111111111111111
Decimal value QV>: 161061273


Values greater than 9999999 are output as 161061273.
Values less than -9 999999 are output as
-161061 273. The working range of the function block has been exceeded.

## Operating hours counter

MFD-Titan provides 4 independent operating hours counters. The counter states are retained even when the device is switched off. As long as the enable coil of the operating hours counter is active, MFD-Titan counts the hours in minute cycles.




Figure 126: MFD-Titan circuit diagram with operating hours counter.

| OTM4 |
| :--- | :--- | :--- |
| III |
| OUP |

## Contacts

OT01Q1 to OT04Q1
The contact switches when the upper threshold value has been reached (greater than or equal to).

## Coils

- OT01EN to OT04EN: enable coil
- OT01RE to OTO4RE: reset coil

Memory requirement of the operating hours counter The operating hours counter function block requires 36 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the operating hours counter function block

If the enable coil OT..EN is triggered to the 1 state, the counter adds the value 1 to its actual value every minute (basic clock rate: 1 minute).

If the actual value on $\mathrm{QV}>$ reaches the setpoint value of $\gg 1$, the contact OT..Q1 switches for as long as the actual value is greater than or equal to the setpoint value.

The actual value is retained in the unit until the Reset coil OT..RE is actuated. The actual value is then set to zero.

Operating mode change RUN, STOP, Voltage On, Off, Delete program, Change program, Load new program. All these actions do not delete the actual value of the operating hours counter.

## Accuracy

The operating hours counter is accurate to the nearest minute. If the enable coil signal is terminated within a minute, the value for seconds is lost.

The value range of the operating hours counter is between 0 hours and 100 years.

## PUT, send a value onto the network

The function block allows you to selectively send a 32 bit value onto the network. The PUT function block provides data on the easy-NET that another station indicates it requires via the GET function block.

```
T ||Q|--------------------------------------N FT|G
```



Figure 127: MFD-Titan circuit diagram with PUT function block

Parameter display and parameter set for the PUT function block:

| FTII | PUT function block (places a value onto the network), number 11 |
| :---: | :---: |
| - | Does not appear in the parameter display |
| \%II | Setpoint value which is put onto the easy- |

## Input

The function block input $\$ I \mid$ can be assigned the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Contacts

PT01Q1 to PT32Q1: state of the trigger coil

## Coils

PT01T to PT32T: trigger coils

## Memory requirement of the PUT function block

The PUT function block requires 36 bytes of memory plus 4 bytes per constant on the function block input.

## PUT diagnostics

The PUT function block only functions when the easy-NET network is functioning correctly ( $\rightarrow$ Section "Signs of life of the individual stations and diagnostics", Page 346).

## Function of the PUT function block



Figure 128: Signal diagram of PUT function block
1: trigger coil
2: trigger coil contact feedback
3: send

## Pulse width modulation

MFD-Titan provides 2 pulse width modulation function blocks PW01 and PW02. The function blocks are connected directly to the outputs.

They are assigned as follows:
PW01 $\rightarrow$ Q1
PW02 $\rightarrow$ Q2
When using the pulse width modulation function block with a minimum on time of less than 1 s only use devices with transistor outputs.

The pulse width modulation function block is primarily used for outputting the manipulated variable of a PID controller. The maximum frequency is 200 kHz . This corresponds to a period duration of 5 ms . The maximum period duration is 65.5 s.

Wiring a pulse width modulation function block
A pulse width modulation function block is integrated in the circuit diagram as a contact or coil.

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.



Figure 129: MFD-Titan circuit diagram with pulse width modulation.

| FWIL <br> 5 <br> $\% \mathrm{FD}$ <br> 怙 | $\pm$ | Parameter display and parameter set for pulse width modulation: |  |
| :---: | :---: | :---: | :---: |
|  |  | Fowe | Pulse width modulation function block number 02 |
|  |  | + | Appears in the parameter display |
|  |  | 3 se | Manipulated variable input |
|  |  | FD | Period duration in ms |
|  |  | 阬 | Minimum on duration, minimum off duration in ms |

The parameter display for a timing relay is used to modify the period duration, the minimum on time and the enabling of the parameter display.

Value and time ranges

| Parameter | Value and time range | Resolution |
| :--- | :--- | :--- |
| FO | 0 to 4095 | 1 digit |
| FD | 0 to 65535 | ms |
| ME | 0 to 65535 | ms |

$\rightarrow \quad$ The minimum time setting for the period duration is: 0.005 s ( 5 ms )

## Inputs

 assigned the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Contacts

PW01E1 to PW02E1, the minimum on duration or the minimum off duration was undershot.

## Coils

PW01EN to PW02EN, enable coil.

## Memory requirement of the function block

The pulse width modulation function block requires 48 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the pulse width modulation function block

The pulse width modulation function block must be enabled so that it can work. Coil PW..EN is active. If coil PW..EN is not active, the entire function block is deactivated and reset. The output value is set to zero.

The manipulated variable at function block input $>$ SV is converted to a pulse string with a constant period duration. The pulse width is proportional to the manipulated variable $>$ SV. The period duration and the minimum on duration can be selected as required within the specified limits.

The function block causes a direct output of the pulse to the corresponding output. The output image of the circuit diagram is always updated.

The following applies if the output of a pulse width modulator is used as a coil in the circuit diagram:

The state of the output is not refreshed from the circuit diagram.

The following applies to the minimum on duration:

- The minimum on duration is the same as the minimum off duration.
- The minimum on duration must not exceed $10 \%$ of the period duration. The ratio of period duration/minimum on duration (P/M) determines which percentage of the manipulated variable has no effect. The minimum on duration must be set as low as possible so that the P/M ratio is as high as possible. If the minimum on duration must not be too low, due to the output relay, the period duration must be increased accordingly.
- The minimum on duration is 1 ms .
- If the actual value of the pulse length is less than the minimum on duration, the minimum on duration has the effect of the pulse time. Note the state of the contact PW..E1.
- If the off duration of the pulse is less than the minimum off duration, outputs Q1 and Q2 are continuously in operation. Note the state of the contact PW..E1.


## Setting date/time

This function block allows you to selectively place the date and time onto the network. All other stations accept the date and time of the sending station. The function block name is SC01 (send clock).


Figure 130: MFD-Titan circuit diagram with SC function block

## Parameter display and parameter set for the SC function block:

The SC01 function block has no parameters as it is a triggered system service.

Coil
SC01T: trigger coil

## Memory requirement of the SC function block

The SC function block requires 20 bytes of memory.

## SC diagnostics

The SC function block only functions when the easy-NET network is functioning correctly ( $\rightarrow$ Section "Signs of life of the individual stations and diagnostics", Page 346).

## Function of the date/time function block

If the trigger coil of the function block is activated, the current date, the day of the week and time from the sending station is automatically put onto the easy-NET network. All other network stations must accept these values.

The station that sends its date and time does this when the seconds value is zero.

Example: The trigger pulse is actuated at 03:32:21 (hh:mm:ss). The other stations are synchronised at 03:33:00. This time is accessed by all other stations.

This process can be repeated as often as desired. The trigger coil must be triggered again from the 0 to the 1 state.

## Accuracy of time synchronisation

The maximum time deviation between the functional stations is 5 s .

## Set cycle time

MFD-Titan provides one set cycle time function block ST01. The set cycle time function block is a supplementary function block for the PID controller.

The set cycle time function block provides a fixed cycle time for processing the circuit diagram and the function blocks.

## Wiring a set cycle time function block

The ST set cycle time function block is integrated in the circuit diagram as a coil.

## $\longrightarrow$ <br> To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.

Figure 131: MFD-Titan circuit diagram with enabling of set cycle time function block.

| $\begin{array}{r} \operatorname{sTl} 1 \\ 31 \end{array}$ | $\dagger$ | Parameter display for set cycle time: |  |
| :---: | :---: | :---: | :---: |
|  |  | STO1 | Set cycle time function block number 01 |
|  |  | + | Appears in the parameter display |
|  |  | > I 1 | Set cycle time |

The parameter display is used to modify the set cycle time, the minimum on time and the enabling of the parameter display.

Time range

| Parameter | Value and time range | Resolution |
| :--- | :--- | :--- |
| II | 0 to 1000 | ms |

## Inputs

The function block input \$ I I can be assigned the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Coils

ST01EN, enable coil.
Memory requirement of the function block
The set cycle time function block requires 24 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the set cycle time function block

The function block is used to define a fixed cycle time.

## $\rightarrow$

The function block must be enabled so that it can work. Coil ST01EN is active. If coil ST01EN is not active, the entire function block is deactivated and reset.

Actual cycle time is less than the set cycle time: If the maximum cycle time present is less than the set cycle time, the set cycle time is constant.

Actual cycle time is greater than the set cycle time: If the maximum cycle time present is greater than the set cycle time, the set cycle time has no effect.

## Attention!

The shorter the cycle time, the faster the control and regulation process.

Set as small a value for the set cycle time as possible. The processing of the function blocks, reading of the inputs and writing of outputs is only carried out once every cycle. Exception: All function blocks that are processed irrespective of the controller.

## Timing relay

MFD-Titan provides 32 timing relays from T 01 to T 32 .
A timing relay is used to change the switching duration and the make and break times of a switching contact. The delay times can be configured between 5 ms and 99 h 59 min .

## Wiring a timing relay

You integrate a timing relay into your circuit in the form of a contact and coil. The function of the relay is defined via the parameter display. The relay is started via the trigger coil T..EN and can be selectively reset via the reset coil T..RE. The actual timeout running can be stopped via the third coil T..ST.

To prevent unpredictable switching states, use each coil of a relay once only in the circuit diagram.


Figure 132: MFD-Titan circuit diagram with timing relay.

|  | Parameter display and parameter set for timing relay: |  |
| :---: | :---: | :---: |
|  | T 02 | Timing relay function block number 02 |
|  | X | On-delayed mode |
|  | M: 5 | Time range Minute: Seconds |
|  | + | Appears in the parameter display |
|  | >II | Time setpoint value 1 |
|  | >12 | Time setpoint value I (on a timing relay with 2 setpoint values) |
|  | W) | Timed-out actual time in RUN mode |

The parameter display for a timing relay is used to modify the switching function, time base or setpoint times and enable the parameter display.

Timing relay modes

| Parameter | Switch function |
| :---: | :---: |
| X | On-delayed switching |
| \% | On-delayed with random time range |
| ! | Off-delayed switching |
| \% | Off-delayed with random time range |
| x x (1) | On and off delayed |
| $\square$ | Off-delayed with random time range, setpoint retriggerable |
| \% | Off-delayed with random time range, retriggerable |
| \%㽞 | On and off delayed switching with random time, 2 time setpoints |
| 』 | Single-pulse switching |
| \# | Switch with flashing, synchronous, 2 time setpoint values |
| - | Switch with flashing, asynchronous, 2 time setpoint values |

## Time range

| Parameter | Time range and setpoint time | Resolution |
| :---: | :---: | :---: |
| 3 -00.000 | Seconds, 0.005 to 999.995 s for constants and variable values | 5 ms |
| M: \% 00:00 | Minutes: Seconds 00:00 to 99:59 only for constants and variable values | 1 s |
| H:M \#0:0] | Hours: Minutes, 00:00 to 99:59 only for constants and variable values | 1 min . |

$\rightarrow \quad$ Minimum time setting:
0.005 s ( 5 ms ).

If a time value is less than the MFD cycle time, the elapsed time will only be recognised in the next cycle.

## Inputs

The function block inputs $\% \mathbb{I}$ and $\% \mathbb{I}$ can have the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Outputs

Actual value ...QV>
The actual value ...QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Variable setpoint values

Behaviour of the setpoint value when variable values are used.

- Variable values can be used.
- Variable values must be transferred using operands.
- With the time base "s" the value is accepted as a "value in ms".
- The last position is rounded up to a zero or five.
- With the time base " $\mathrm{M}: \mathrm{S}$ " the value is accepted as a "value in s".
- With the time base " $\mathrm{H}: \mathrm{M}:$ " the value is accepted as a "value in M (minutes)".

$\xrightarrow{\geqslant}$The delay times are the same as described for the constants.

Example:
Time base "s"
The operand has the value 9504.
The time value is 9.50 s .
Operand value 45507
The time value is 45.510 s .
Time base " $\mathrm{M}: \mathrm{S}^{\prime}$
The operand has the value 5999.
The time value is $99 \mathrm{~min}, 59 \mathrm{~s}$ : This is the maximum value.
Time base "H:M"
The operand has the value 5999.
The time value is $99 \mathrm{~h}, 59 \mathrm{~min}$.

## Displaying the parameter set in the PARAMETERS menu <br> - + Access enabled <br> - - Access disabled

## Contacts

T 01 Q1 to T 32Q1

## Coils

- T 01EN to T 32EN: trigger coil;
- T 01RE to T 32RE: reset coil;
- T 01ST to T 32ST: stop coil.


## Memory requirement of the timing relay

The time relay function block requires 48 bytes of memory plus 4 bytes per constant on the function block input.

## Retention

Timing relays can be operated with retentive actual values. The number of retentive timing relays can be selected in the SYSTEM $\rightarrow$ RETENTION menu.

If a timing relay is retentive, the actual value is retained when the operating mode changes from RUN to STOP as well as when the power supply is switched off.

If MFD is started in RUN mode, the timing relay operates with the retentively saved actual value. The state of the trigger pulse must correspond to the function of the timing relay.

1 signal when:

- on-delayed,
- single pulse,
- flashing.

0 status for offdelayed.

## Function of the timing relay function block Timing relay, on-delayed with and without random switching

Random switching
The contact of the timing relay switches randomly within the setpoint value range.


Figure 133: Signal diagram of timing relay, on-delayed (with and without random switching)

1: trigger coil T..EN
2: stop coil T..ST
3: reset coil T..RE
4: switching contact (make contact) T..Q1
$t_{\mathrm{s}}$ : setpoint time

- Range A:

The set time elapses normally.

- Range B:

The entered setpoint does not elapse normally because the trigger coil drops out prematurely.

- Range C:

The Stop coil stops the time from elapsing.


Figure 134: Signal diagram of timing relay, on-delayed (with and without random switching)

- Range D:

The Stop coil is inoperative after the time has elapsed.

- Range E:

The Reset coil resets the relay and the contact.

- Range F:

The Reset coil resets the time during the timeout. After the Reset coil drops out, the time elapses normally.

## Timing relay, off-delayed with and without random switching

Random switching, with and without retriggering
The contact of the timing relay randomly switches within the set value range.

## Retriggering

When the time is running and the trigger coil is reactivated or deactivated, the actual value is reset to zero. The set time of the timing relay is timed out once more.


Figure 135: Signal diagram of offdelayed timing relay (with/without random switching, with/without retriggering)
1: trigger coil T..EN
2: stop coil T..ST
3: reset coil T..RE
4: switching contact (make contact) T..Q1
$t_{s}$ : setpoint time

- Range A:

The time elapses after the trigger coil is deactivated.

- Range B : The Stop coil stops the time from elapsing.
- Range C:

The Reset coil resets the relay and the contact. After the Reset coil drops out, the relay continues to work normally.

- Range D:

The Reset coil resets the relay and the contact when the function block is timing out.


Figure 136: Signal diagram of offdelayed timing relay (with/without random switching, with/without retriggering)

- Range E :

The Trigger coil drops out twice. The set time $t_{\mathrm{s}}$ consists of $t_{1}$ plus $\mathrm{t}_{2}$ (switch function not retriggerable).

- Range F:

The Trigger coil drops out twice. The actual time $t_{1}$ is cleared and the set time $\mathrm{t}_{\mathrm{s}}$ elapses completely (retriggerable switch function).

## Timing relay, on-delayed and off-delayed with and without random switching

Time value $>11$ : On-delayed time
Time value $>12$ : Off-delayed time
Random switching
The contact of the timing relay switches randomly within the setpoint value range.


Figure 137: Signal diagram of timing relay, on and off-delayed 1
1: trigger coil T..EN
2: stop coil T..ST
3: reset coil T..RE
4: switching contact (make contact) T..Q1
$t_{\text {s }}$ : pick-up time
$t_{\text {s2 }}$ : drop-out time

- Range A:

The relay processes the two times without any interruption.

- Range B:

The trigger coil drops out before the on-delay is reached.

- Range C:

The Stop coil stops the timeout of the on-delay.

- Range D:

The stop coil has no effect in this range.


Figure 138: Signal diagram of timing relay, on and off-delayed 2

- Range E:

The Stop coil stops the timeout of the off-delay.

- Range F:

The Reset coil resets the relay after the on delay has elapsed

- Range G:

The Reset coil resets the relay and the contact whilst the on delay is timing out. After the Reset coil drops out, the time elapses normally.


Figure 139: Signal diagram of timing relay, on and off-delayed 3

- Range H :

The Reset signal interrupts the timing out of the set time.

## Timing relay, single pulse



Figure 140: Signal diagram of timing relay, single pulse 1
1: trigger coil T..EN
2: stop coil T..ST
3: reset coil T..RE
4: switching contact (make contact) T..Q1

- Range A:

The trigger signal is short and is lengthened

- Range B:

The Trigger signal is longer than the set time.

- Range C:

The Stop coil interrupts the timing out of the set time.


Figure 141: Signal diagram of timing relay, single pulse 2

- Range D:

The Reset coil resets the timing relay.

- Range E:

The Reset coil resets the timing relay. The Trigger coil is still activated after the Reset coil has been deactivated and the time is still running.

Timing relay, synchronous and asynchronous flashing
Time value $>11$ : Pulse time
Time value $>12$ : Pause time
Synchronous (symmetrical) flashing: $>11$ equal $>12$
Asynchronous flashing: >11 not equal >12


Figure 142: Signal diagram of timing relay, synchronous and asynchronous flashing
1: trigger coil T..EN

2: stop coil T..ST
3: reset coil T..RE
4: switching contact (make contact) T..Q1

- Range A:

The relay flashes for as long as the Trigger coil is activated.

- Range B:

The Stop coil interrupts the timing out of the set time.

- Range C:

The Reset coil resets the relay.

## Value limitation

MFD-Titan provides 32 value limitation function blocks VC01 to VC32. The value limitation function block allows you to limit values. You can define an upper and lower limit value. The function block will then only output values within these limits.

## Wiring of a value limitation function block

You can integrate a value limitation function block into your circuit as a coil.

## 

Figure 143: MFD-Titan circuit diagram with VC value limitation

| VET 1 | $+$ |
| :---: | :---: |
| 311 |  |
| $\bigcirc \mathrm{H}$ |  |
| \% |  |
| W\% |  |

Parameter display and parameter set for the VC function block:

| VE2 | VC value limitation function block number 27 |
| :---: | :---: |
| + | Appears in the parameter display |
| \$I1 | Input value |
| 3 H | Upper limit value |
| \%L | Lower limit value |
| QW) | Output value limited |

## Inputs

The function block inputs $\% I 1, ~\rangle M H$ and $\rangle \mathrm{SL}$ can be assigned the following operands:

- Constants
- Markers MD, MW, MB
- Analog inputs IA01 to IA04
- IA01: terminal I7
- IA02: terminal I8
- IA03: terminal I11
- IA04: terminal I12
- Analog output QA01
- Actual value ... QV> of another function block


## Output

The function block output QV> can be assigned the following operands:

- Markers MD, MW, MB
- Analog output QA01


## Value range for inputs and outputs

|  |  | Value range |
| :---: | :---: | :---: |
| SI1 | Input value | -2147483648 to +2147483647 |
| SH | Upper limit value |  |
| SL | Lower limit value |  |
| W0) | Output value |  |

## Displaying the parameter set in the PARAMETERS menu

-     + Access enabled
-     - Access disabled

Coil
VC01EN to VC32EN, function block enable

## Memory requirement of the value limitation function block

The value limitation function block requires 40 bytes of memory plus 4 bytes per constant on the function block input.

## Function of the value limitation function block

The function block must be enabled so that it can work. Coil VC..EN is active. If coil VC..EN is not active, the entire function block is deactivated and reset. The output value is set to zero.

The value is accepted at input VC...I1 if the enable coil is active. If the value is greater than the upper limit value or less than the lower limit value, the respective limit value is output at VC..QV.

## Example with timing relay and counter function block

A warning light flashes when the counter reaches 10 . In the example, both function blocks C 01 and T 01 are wired.


Figure 144: Hardwiring with relays


Figure 145: Wiring with the MFD-Titan


Figure 146: MFD-Titan wiring and circuit diagram
Entering function block parameters from the circuit diagram.
You can access the parameter entry from the contact as well as from a coil.

- Enter the circuit diagram up to III as a coil.
$\pm \mathbb{I}$ is the counter coil of the counter 01 function block.


Figure 147: MFD-Titan wiring and circuit diagram

- Keep the cursor on the number.
- Press the OK button.

If the cursor is on the contact number, MFD-Titan will call up the parameter display when you press $\mathbf{O K}$.

##  <br> >SH +10 <br> sL <br> 30

The first part of the parameter set of a counter is displayed.

- Move the cursor > over the + character to the value input behind $\overline{S H}$ :
- $>\mathrm{SH}$ means: function block input upper counter setpoint value
- The + character means that the parameters of this timing relay can be modified using the PARAMETERS menu.
- Change the upper counter setpoint to 10 :
- Use $\langle>$ to move the cursor onto the tens digit.
- Use $\wedge \vee$ to modify the value of the digit.
- Press OK to save the value and ESC to return to the circuit diagram.

MFD-Titan has specific parameter displays for the function blocks. The meaning of these parameters is explained under each function block type.

- Enter the circuit diagram up to contact T\|l of the timing relay. Set the parameters for T ITI.


## T प1 4 E +   guv

The timing relay works like a flashing relay. The MFD-Titan symbol for the flashing relay is $\mathbb{H}$. The function is set on the top right beside the number in the parameter display.

The time base is set to the right of the "flashing" function. Leave the time base set to $=$ for seconds.

- Move the cursor to the right over the + character in order to input the time setpoint value $\$ I 1$.

If the same setpoint value is input for $\geqslant \mathbb{I}$ and $\$ \mathbb{I}$, the timing relay functions as a synchronous flasher.

The + character means that the parameters of this timing relay can be modified using the PARAMETERS menu.

- Confirm the value input with OK.
- Press ESC to leave circuit diagram entry.
- Complete the circuit diagram.
- Test the circuit diagram using the power flow display.
- Switch MFD-Titan to RUN mode and return to the circuit diagram.

Each parameter set can be displayed using the power flow display for the circuit diagram.

- Move the cursor onto $\mathbb{I I}$ and press OK.

The parameter set for the counter is displayed with actual and setpoint values.

- Move the cursor $\vee$ downwards until you see the value QV>.
- Switch the input I5. The actual value changes.

On the display .... indicates that the counting coil is actuated.

If the actual and upper setpoint values of the counter are the same, the timing relay switches the warning light on and off every 2 seconds.

```
T|\| = +
    \I| |01.|||
    \IZ
    W% |.550
.. EN.
```

Doubling the flashing frequency:

- Select the power flow display T II and change the

When you press OK, the warning light will flash at twice the frequency.

On the display $\mathbb{E} \mathbf{N}$ indicates that the enable coil is actuated.
Setpoint value settings with constants can be modified via the PARAMETERS menu.
$\rightarrow$
The actual value is only displayed in RUN mode. Call up the parameter display for this via the power flow display or PARAMETERS menu.

## 5 Visualization with MFD-Titan

In the following description, the term "visualization" is used for the display and operator function.

Whilst you can enter the circuit diagram via EASY-SOFT as well as directly on the device, all the visualization functions can only be programmed using EASY-SOFT-PRO. The visualization functions can then be loaded from there to the MFD-Titan or onto a memory card (download function).

This chapter uses the examples supplied (from version 6.0) to describe the basic methods of designing visualization systems using EASY-SOFT-PRO. The EASY-SOFT Help system provides a more detailed description of the software.

## Screens

EASY-SOFT-PRO manages the visualization elements in screens. These elements can be inserted in the screens and are called screen elements in the following description. You can use up to 255 screen elements inside one screen. Due to the memory allocation of the system, it is more advisable to use several screens ( $\rightarrow$ Section "Memory division", Page 280).

The following screen element are available:

- Static text,
- Bit display,
- Date and time,
- Bitmap,
- Numerical value,
- Value entry,
- Message text.

The individual screen elements are explained in the examples.

## Memory division

Screen memory


Figure 148: Memory division MFD
The maximum size of the program memory is 8 KByte. This memory area is used to store the circuit diagram and also reserves enough space for displaying the largest screen.

The screen memory has a total memory capacity of 24 KByte, which is used in this memory area to store all the screens created.

It should therefore be ensured that screens have the lowest possible memory requirement so that enough space is available in the program memory for the largest screen and the circuit diagram. If a circuit diagram is not required, the memory requirement of the largest screen must not exceed the 8 KByte limit.

The EASY-SOFT-PRO status bar indicates the available memory, the available screen memory and the required memory for the active screen element.
If the available memory is exceeded the indicator will turn red..

Western European character table

| Code | Meaning | Code | Meaning | Code | Meaning | Code | Meaning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 28 |  | 56 | 8 | 84 | T |
| 1 |  | 29 |  | 57 | 9 | 85 | U |
| 2 |  | 30 |  | 58 | : | 86 | V |
| 3 |  | 31 |  | 59 | ; | 87 | W |
| 4 |  | 32 | Blank | 60 | < | 88 | X |
| 5 |  | 33 | ! | 61 | $=$ | 89 | Y |
| 6 |  | 34 | " | 62 | $>$ | 90 | Z |
| 7 |  | 35 | \# | 63 | ? | 91 | [ |
| 8 |  | 36 | \$ | 64 | @ | 92 | 1 |
| 9 |  | 37 | \% | 65 | A | 93 | ] |
| 10 |  | 38 | \& | 66 | B | 94 | $\wedge$ |
| 11 |  | 39 | ' | 67 | C | 95 | - |
| 12 |  | 40 | 1 | 68 | D | 96 |  |
| 13 |  | 41 | ) | 69 | E | 97 | a |
| 14 |  | 42 | * | 70 | F | 98 | b |
| 15 |  | 43 | + | 71 | G | 99 | C |
| 16 |  | 44 | , | 72 | H | 100 | d |
| 17 |  | 45 | - | 73 | 1 | 101 | e |
| 18 |  | 46 | . | 74 | J | 102 | f |
| 19 |  | 47 | 1 | 75 | K | 103 | 9 |
| 20 |  | 48 | 0 | 76 | L | 104 | h |
| 21 |  | 49 | 1 | 77 | M | 105 | i |
| 22 |  | 50 | 2 | 78 | N | 106 | j |
| 23 |  | 51 | 3 | 79 | 0 | 107 | k |
| 24 |  | 52 | 4 | 80 | P | 108 | 1 |
| 25 |  | 53 | 5 | 81 | Q | 109 | m |
| 26 |  | 54 | 6 | 82 | R | 110 | n |
| 27 |  | 55 | 7 | 83 | S | 111 | 0 |


| Code | Meaning | Code | Meaning | Code | Meaning | Code | Meaning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 112 | p | 141 | i | 170 | $\neg$ | 199 | Ã |
| 113 | q | 142 | Ä | 171 | 1/2 | 200 | + |
| 114 | r | 143 | Å | 172 | $1 / 4$ | 201 | + |
| 115 | s | 144 | É | 173 | i | 202 | - |
| 116 | t | 145 | æ | 174 | " | 203 | - |
| 117 | u | 146 | A | 175 | " | 204 | i |
| 118 | v | 147 | ô | 176 | ! | 205 | - |
| 119 | w | 148 | ö | 177 | i | 206 | + |
| 120 | $x$ | 149 | ò | 178 | ! | 207 | $€$ |
| 121 | y | 150 | û | 179 | i | 208 | д |
| 122 | z | 151 | ù | 180 | i | 209 | Đ |
| 123 | \{ | 152 | ÿ | 181 | Á | 210 | Ê |
| 124 | \| | 153 | 0 | 182 | Â | 211 | Ë |
| 125 | \} | 154 | Ü | 183 | À | 212 | È |
| 126 | ~ | 155 | $\varnothing$ | 184 | $\bigcirc$ | 213 | i |
| 127 | i | 156 | £ | 185 | i | 214 | 1 |
| 128 | ç | 157 | $\varnothing$ | 186 | i | 215 | î |
| 129 | ü | 158 | $\times$ | 187 | + | 216 | i |
| 130 | é | 159 | $f$ | 188 | + | 217 | + |
| 131 | â | 160 | á | 189 | ¢ | 218 | + |
| 132 | ä | 161 | i | 190 | ¥ | 219 | i |
| 133 | à | 162 | ó | 191 | + | 220 | - |
| 134 | a | 163 | ú | 192 | + | 221 | I |
| 135 | ¢̧ | 164 | ก̃ | 193 | - | 222 | I |
| 136 | ê | 165 | N | 194 | - | 223 | - |
| 137 | ë | 166 | a | 195 | + | 224 | ó |
| 138 | è | 167 | - | 196 | - | 225 | B |
| 139 | i | 168 | i | 197 | + | 226 | 0 |
| 140 | $\hat{\imath}$ | 169 | ${ }^{\circledR}$ | 198 | à | 227 | o |

For Immediate Delivery call KMParts.com at (866) 595-9616

| Code | Meaning | Code | Meaning | Code | Meaning | Code | Meaning |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 228 | õ | 235 | Ù | 242 | = | 249 | " |
| 229 | 0 | 236 | y | 243 | 3/4 | 250 | . |
| 230 | $\mu$ | 237 | Y | 244 | 9 | 251 | 1 |
| 231 | p | 238 | - | 245 | § | 252 | 3 |
| 232 | p | 239 |  | 246 | $\div$ | 253 | 2 |
| 233 | Ú | 240 | - | 247 | . | 254 | i |
| 234 | ט | 241 | $\pm$ | 248 | - | 255 |  |

## Screen overview

The first time the visualization function is called the screen overview will appear with the following tabs:

- Screens,
- Passwords,
- Languages,
- Screen activation.


## Screens tab

The Screens tab is used for entering the screen name, the start screen and password protection (if required) for the screens concerned.

## Passwords tab

The Passwords tab enables you to define up to three passwords and assign a logout time with each one for closing the screen.

## Languages tab

The Languages tab is used for entering different languages that are to be used. You can then define texts in these languages for all the text elements of the visualization program. However, only one download language can be defined for downloading to the device. This is also defined here and can be modified quickly when the devices are commissioned.

You can export/import the languages to/from a Microsoft Excel spreadsheet, enabling texts to be sent off in this way for external translation.

## Screen activation tab

The Screen activation tab allows you to define associated variables for activating the screen. The variables available depend on the variable type concerned. You can use markers (Byte, Word, DWord), analog inputs and outputs (word) or function block inputs/outputs (DWord) as associated variables. In the List of activation values you define whether the screen is to be activated by the associated variable and the value at which this is done.

If the Force screen change check box is activated, the MFD device will immediately abort every job started and activate this mask when the value of the associated variable triggers it. This could mean, for example, that value entries, macros for processing functions after pressing an operator button, and also a password entries are aborted. This can be useful for outputting appropriate alarm messages.

Unsaved entries will therefore be lost if a screen is activated that is associated with a particular event and the Force screen change option is active! In this case, while the associated variable is set by the program, it is also not possible to carry out a screen change via the keypad.

In the List of activation values you can select whether the screen is to be activated by the set variable and at which value.

## Screen editor

You process the individual screens in the Screen editor. This provides the following different screen elements for selection:

- Static text,
- Bit display,
- Date and time,
- Bitmap,
- Numerical value,
- Value entry,
- Message text.

These screen elements are fully described in the following sections.

The Project info, Program info and Screen info tabs are displayed if there are no screen elements activated. The relevant tabs for a particular screen element are shown if it is inserted in the screen.

## Static text

Static text is a simple text display that is shown as soon as the screen is active. Up to 16 normal font size characters can fit in one text field and up to 4 text lines can be arranged in rows. The number of characters per text field and the number of displayable lines is halved if double font characters are used. The Static text is assigned to a language in the Language selection field. The languages available are defined in the Screen overview.

## Programming in EASY-SOFT-PRO

- Hold down the left mouse button to drag the Static text screen element onto the screen.
- Place the mouse over the Static text screen element, hold down the left mouse button and drag the screen element to the required position.
- Enter the required text in the Static text tab and select the language to which the text is to be assigned.

You define the available languages in the Languages tab of the Screen overview. These languages apply to the text elements of all screens.

The height of the element frame adjusts itself to the font size - either normal or double font size. You can change the font size by activating the context menu (right mouse button) or by dragging the selection handle at the bottom edge of the element frame concerned. When changing to double font size, ensure that there is sufficient space available underneath the element.

The width of the element can be adjusted as required. You can set the size required by holding down the left mouse button and dragging a selection handle of the element frame. When applicable, ensure that the elements provide sufficient space in all languages. This can be checked easily in the screen overview.

The following examples explain the function of Static text:

## Example program 1- different display formats

The program consists of four screens in which the static text is displayed in different ways. The individual screens can be selected with the Cursor buttons $\wedge$ and $\vee$. The screen change was defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333).

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Statischer_Text_BspProg_01.e40

## Screen 1

Screen 1 displays a static text in normal font size.

## Screen 2

## Text

Screen 2 displays a static text enlarged.

## Screen 3

Screen 3 shows three static texts in different font sizes.

## Screen 4

Screen 4 shows three static texts arranged in rows.

## Example program 2 - different display formats with password request for one screen

The program consists of four screens in which the static text is displayed in different ways. The fourth screen contains a password request. The individual screens can be selected with Cursor buttons $\wedge$ and $\vee$. The screen change was defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333).

The defined password is requested when exiting screen 4. In this case, it is the number 2 which has to be confirmed with OK. Further scrolling through the screens cannot be done without entering the correct password. You can leave the password request by pressing ESC, which, however, will only move you back to the previous screen.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Statischer_Text_BspProg_02.e40
Screen 1
Screen 1 displays a static text in normal font size.

## Screen 2

Screen 2 displays a static text enlarged.

## Screen 3

Screen 3 shows three static texts in different font sizes.

```
Four
static texts
arranged
in rows!!
```


## Screen 4

Screen 4 shows three static texts arranged in rows.

## Example program 3 - different display formats with screen activation via a counter

The program consists of four screens in which the static text is displayed in different ways. The individual screens are activated via counter C01. The counter's SH upper switch value is 5 . The activation pulse for activating the screens is supplied by timing relay T01. This generates the counter values 0 to 5 . Screen 1 is activated with counter value 1 , screen 2 with counter value 2 etc. Once the counter's upper switch value has been reached, timing relay T02 is started which resets the counter. This therefore produces a continuous loop. Timing relay T02 provides a reset delay for the counter.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Statischer_Text_BspProg_03.e40

## Screen 1

Screen 1 displays a static text in normal font size.

## Screen 2

Screen 2 displays a static text enlarged.

## Screen 3

Screen 3 shows three static texts in different font sizes.

## Screen 4

Screen 4 shows four static texts arranged in rows.

## Bit display

The bit display screen element has an input that can be associated with a Boolean variable. The signal status of this variable changes the bit display screen element from a full screen to a frame in the MFD display.

## Programming in EASY-SOFT-PRO

- Hold down the left mouse button and drag the Bit display screen element onto the screen.
- Place the mouse over the element, hold down the left mouse button and position it as required.

The height and width of the element frame is variable and can be adjusted accordingly by enlarging or reducing the element frame vertically, horizontally or diagonally. This is done by dragging a selection handle of the element frame with the left mouse button held down.

Associated variable tab: defines the Boolean variable for activating the bit display.

Visibility tab: option for making the element invisible by means of an associated variable.
$\rightarrow$
The bit display is always output as a solid image. The invisible function is the only option available. If there is an overlap of elements the bit display that was inserted first is positioned at the back and the last one at the front. This can be modified for the activated screen element in the toolbar (Move to foreground/background buttons).
$\rightarrow$
Large bit displays require a large amount of processor capacity and should be avoided in time-critical applications.

## Example program 1 - associated variable and visibility

The program consists of five screens that can be selected with the Cursor buttons $\wedge$ and $\vee$. The screen change was defined in the Button Editor ( $\rightarrow$ Section "Button editor", Page 333).

The screens show examples of the use of both associated variable and visibility elements.

The circuit diagram uses six on-delayed timing relays that activate outputs Q1 to Q4 and LED 3 in succession after an elapsed time. This operation is run in a continuous loop since timing relay T06 resets all timing relays after a set time.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Bitanzeige_BspProg_01.e40

## Screen 1

Screen 1 illustrates the activation of the bit display exclusively via the associated variable. The first screen contains four bit display elements. These are activated in succession via Boolean operands Q1 to Q4. A make contact bit logic is selected for setting the bit display elements to the state of the corresponding outputs (on/off).


Figure 149: Bit display and static text

## Screen 2

Screen 2 illustrates the activation of the bit display with overlaid static text, exclusively via the associated variable. Screen 2 contains four bit display elements. These are activated in succession via Boolean operands Q1 to Q4. A make contact bit logic is selected for setting the bit display elements to the state of the corresponding outputs (on/off). The bit display is overlaid partly with static texts.


Figure 150: Bit display with overlaid static text

## Screen 3

Screen 3 illustrates the possible uses of the Visibility tab for the bit display. In this screen a bit display element has been enlarged to the full size of the screen. It is activated via the Boolean operand Q1, with a make contact bit logic so that the bit display element takes on the state of the output Q1 (on/off).

The bit display is made invisible via the Boolean operand Q3. A make contact bit logic is also used here so that invisibility is activated for as long as Q3 in the On state. When the Reset pulse is present, only the frame of the bitmap is visible (state of the bitmap is "off", bitmap is visible). The display is overlaid partly with static text.


$$
\begin{gathered}
\text { Bits } \\
\text { invisible } \\
\text { with Q3 on! }
\end{gathered}
$$

Figure 151: Bit display visible/invisible

## Screen 4

Screen 4 illustrates the activation of the bit display (negated) with overlaid static text, exclusively via the associated variable. This screen contains four bit display elements. These are activated in succession via Boolean operands Q1 to Q4. A break contact bit logic is selected here. The bit display is overlaid partly with static texts.


Figure 152: Break contact logic bit display with overlaid text

## Screen 5

Screen 5 illustrates the possible uses of the Visibility tab for the bit display (negated) with overlaid static text. In this screen a bit display element has been enlarged to the full size of the screen. This is activated via the Boolean operand Q1 with the break contact bit logic. In this way, the bit display takes on the opposite status of output Q1. In other words, when Q1 is On, only the frame of the bit display is visible. However, the visibility of the bit display is only activated with the Boolean operand Q3 as the break contact bit logic is selected. The bit display is overlaid partly with static text.


Figure 153: Bit display with frame

## Example program 2 - bit display with automatic screen change

This program is a copy of the program
Bitanzeige_BspProg_01.e40. The only difference is that the screens are activated in succession automatically. (screen change in the Screen overview $\rightarrow$ Screen activation tab $\rightarrow$ Activate Yes).
The program consists of five screens containing bit display elements.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Bitanzeige_BspProg_02.e40

## Date and time

This screen element shows the date and time of the MFD-real-time clock on the display. You can also select for this international display formats according to the ten easy system languages plus the USA display format.

## Programming in EASY-SOFT-PRO:

- Hold down the left mouse button and drag the Date and time screen element onto the screen.
- Place the mouse over the screen element, hold down the left mouse button and position it as required.

The height of the element frame depends on the font size used. Three sizes are possible:

- Normal font,
- Double font and
- Quadruple font.

You can change the font size by activating the context menu (right mouse button) or by dragging the selection handle at the bottom edge of the screen element frame concerned. When increasing the font size, ensure that there is sufficient space available underneath the element.

The maximum width of the element is limited and depends on the font size. This also determines the display a format.

## Date formats tab

Select the language and one of the four formats available in the Date formats tab. These are independent of the language set on the MFD device.

## Visibility tab

The visibility tab provides the option of making the screen element invisible by means of an associated variable.

## Example program 1 - different display formats and invisibility option for a screen

The program consists of eight screens that can be selected via the Cursor buttons $\wedge$ and $\vee$. The screen change is defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333).
The language setting for all eight screens is "Deutsch". The first six screens show various data and time display formats. The seventh screen shows all four formats at the same time and the eighth screen illustrates the invisibility function.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480

## Program: Datum_und_Zeit_BspProg_01.e40

## Screen 1:

Format: DD.MM:YYYY
Display in double font size, therefore only day and month visible in display!

## Screen 2:

Format: DD.MM.YYYY
Display in normal font size, therefore year display also visible!

## Screen 3:

Format: DD.MM.YY HH:MM
Display in normal font size, display of time in hours and minutes.

## Screen 4:

Format: HH:MM
Display of hour and minute in double font size.

## Screen 5:

```
WED 01.10.03
```


## Invisible

via I1!
01.10 .2003

Format: WD DD.MM.YY
Display of weekday and date in normal font size.

## Screen 6:

Format: HH:MM
Display of hour and minute in single font size.

## Screen 7:

Display of different formats possible in one screen. Display in normal font size.

## Screen 8:

Display invisible if I1 actuated. (make contact bit logic!)

## Example program 2 - different display formats with automatic screen change

This program is a copy of the program Datum_und_Zeit_BspProg_01.e40 except that the screen change here is automatic. The program consists of eight screens that can be activated in succession via the counter C01. The pulse signals are generated with timing relay T01. This produces the counter values 0 to 9 . Counter value 1 activates screen 1, counter value 2 activates screen 2 etc. If upper switch value $\mathrm{SH}=9$, the counter resets itself. This therefore produces a continuous loop. The language setting for all eight screens is "Deutsch".

Standard path: C:IProgrammelMoeller Software\EASYSOFT 5 [Pro]\Samples\AWB2528-1480

Program: Datum_und_Zeit_BspProg_02.e40

## Example program 3 - different country settings

The program consists of 11 screens that can be activated automatically via the counter C01. The pulse signals are generated with timing relay T01. This produces the counter values 0 to 12. Counter value 1 activates screen 1, counter value 2 activates screen 2 etc. If upper switch value $S H=12$, the counter resets itself. This therefore produces a continuous loop.

Each screen contains a different country setting. However, this same WD DD MM YY format is shown.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Datum_und_Zeit_BspProg_03.e40

Screen 4
Country
setting
Spanish
MI 01/10/03

Screen 7
Country
setting
Portuguese
QU 01-10-03

Figure 154: Date display with different country settings

## Bitmap

The bitmap mask element makes it possible to display graphics in the MFD display that you have made yourself or have purchased. Display and visibility can change during operation. To do this, you need to associate the bitmap graphics with Boolean variables.

EASY-SOFT-PRO supports the following bitmap graphic formats:

- Windows Bitmap format (bmp),
- JPEG format (jpg),
- Tiff format (tif) and
- Icons (ico).

The formats are converted to monochrome format using suitable conversion procedures and then saved accordingly in the program. The size and position of the bitmap graphic can be modified later in the Mask Editor.

Bitmap graphics require a large amount of memory. Overlaid bitmaps are also stored fully in the memory. The more bitmaps are used use, the more the cycle time will be increased considerably due to the additional memory requirement. This may possibly lead to program malfunctions (e.g. loss of count pulses).

Black and white graphics should be used ideally. These should be between $16 \times 16$ and $32 \times 32$ pixels in size.

## Programming in EASY-SOFT-PRO:

- Hold down the left mouse button and drag the Bitmap screen element into the mask.

This will open the Picture File Selection dialog.
For the optimum display of the graphic file select one of the three conversion processes provided in the Conversion Type area. The Preview shows the selected bitmap and the conversion result. EASY-SOFT-PRO always generates the optimum black and white bitmap graphic for display on the monochrome MFD display. You can also support EASY-SOFT-PRO by optimizing the graphic file.

- Position the mouse above the screen element and move it to the required position with the left mouse button depressed.

The height and width of the element frame is variable and can be adjusted accordingly by enlarging or reducing the screen element frame vertically, horizontally or diagonally. This is done holding down the left mouse button and dragging a selection handle of the element frame. The side ratios of the original graphic are retained when you use the diagonal zoom function.

## Display tab

The Display tab provides the following display formats for the bitmap:

- Flashing (via associated variable),
- Background transparent or covered,
- Inverted


## Visibility tab

The Visibility tab enables you to make the screen element invisible via an associated variable.

## Example program 1 - Bitmap display

The program consists of eight screens that can be selected by the Cursor buttons $\wedge$ and $\vee$. The screen change was defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333).
This program uses simple examples to explain the bitmap display options available.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Bitmap_BspProg_01.e40


## Screen 1:

Screen 1 shows a bitmap without any particular features: small display.

## Screen 2:

Screen 2 contains a bitmap in large display format. The Bitmap flashing field of the Display tab shows an association via the Boolean operand I1. If I1 is actuated, the Bitmap flashes.


Figure 155: Flashing bitmap


## Screen 3:

Screen 3 contains three bitmaps that are arranged in different sizes next to each other.


## Screen 4:

Screen 4 contains two bitmaps that are arranged in different sizes next to each other. The Invert Bitmap Display check box activates the inverted display.

## Screen 5:

Screen 5 contains one bitmap. The Visibility tab controls the bitmap. I1 is used to make the bitmap invisible.


Figure 156: Switch invisible function

## Screen 6:

Screen 6 contains only one bitmap. The Invert Bitmap Display check box is activated in the Display tab. In the Visibility tab the associated variable I2 is defined for switching visibility (break contact bit logic). When 12 is actuated, the bitmap is inverted as shown below.

## Screen 7:

Screen 7 contains two bitmaps. Background covered is selected in the Display tab for both bitmaps. However, as the right bitmap covers the left one, the right bitmap is displayed completely.

## Screen 8:

Screen 8 contains two bitmaps. The right one covers the left one. Both bitmaps are displayed fully since the background of the right bitmap is set for transparent in the Display tab.

## Example program 2 - bitmap display with automatic screen change

The program is a copy of the program
Bitmap_BspProg_01.e40 with the difference that the individual screens are displayed automatically in succession. The circuit diagram contains a pulse generator T01 that triggers the output Q3 (display clock signal) and the counter C01. This operation is run in a continuous loop as the counter activates timing relay T02 when its upper limit value SH is reached. This resets counter C01 after a set time. The counter values activate the corresponding individual screens.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480

Program: Bitmap_BspProg_02.e40

## Example program 3 - overlaying bitmaps

The program consists of three screens that you can select via the Cursor buttons $\wedge$ and $\vee$. The screen change is defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333). This program illustrates the overlaying of bitmaps in a screen. The circuit diagram uses six on-delayed timing relays (T01 to T06), that activate outputs Q1 to Q4 and LED 3 in succession after an elapsed time. This operation is run in a continuous loop since timing relay T06 resets all timing relays after a set time.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Bitmap_BspProg_03.e40

## Screen 1:

The first screen contains five half-overlaid bitmaps. These are activated via the outputs Q1 to Q4 and marker M01, and appear in the display. The half overlaid bitmaps are activated in succession. The Covered option is selected in the Background area of the Display tab, therefore causing the overlaid part of the bitmap to be covered by the bitmap in front of it. In this way it is possible to create the impression of a moving arrow.


Figure 157: Overlaid bitmaps

## Screen 2:

The second screen contains five overlaid bitmaps with each subsequent bitmap being larger than the previous one displayed. The individual bitmaps are made visible in succession via the outputs Q1 to Q4 and the marker M01 (break contact bit logic). The Covered option is selected in the Background area of the Display tab, therefore causing the overlaid part of the bitmap to be covered by the bitmap in front of it. In this way it is possible to create the impression of a moving and expanding arrow.


Figure 158: "Expanding" arrow

## Screen 3:

The third screen contains five fully overlaid bitmaps. These are made invisible in succession from the top to the bottom via the outputs Q1 to Q4 and the LED 3 (make contact bit logic). The Covered option is selected in the Background area of the Display tab. The overlaid section of the bitmap is therefore not visible.

The first bitmap at the lowest level is permanently activated, making it visible as long as all other bitmaps are invisible. This produces a small moving picture.


Figure 159: Rotating arrows

## Numerical value

This mask element allows you to display untreated or scaled signal states in decimal format.

## Value and scaling range

The value range defines the range that is to be displayed. If the values are below or above this range, the MFD activates an underflow or overflow signal.

The scaling range is used for scaling the value range. The lower and upper values of the scaling range are assigned to the lower and upper values of the value range respectively. The MFD displays the value range if a scaling range has not been defined.

## Examples:

In order, for example, to display the value range (0 to 255) of a counter as a percentage ( 0 to $100 \%$ ), enter " 0 " as the minimum value and " 255 " as the maximum value in the Value range field. Enter "\%" as the unit of measure. Activate the Scaling range field and enter " 0 " as the minimum value and " 100 " as the maximum value.

In order, for example, to display the value range (0 to 120) of a timing relay in minutes ( 0 to 2 min ), enter " 0 " as the minimum value and " 120 " as the maximum value in the Value range field. Enter "min" as the unit of measure. Enter " 0 " in the activated Scaling range field as the minimum value and " 120 " as the maximum value.

## Programming in EASY-SOFT-PRO:

- Hold down the left mouse button and drag the Numerical value screen element into the screen.
- Position the mouse above the screen element and move it to the required position with the left mouse button depressed.

The height of the screen element frame depends on the font size selected. Three sizes are available:

- Normal font,
- Double font and
- Quadruple font

You can change the font size by activating the context menu (right mouse button) or by dragging the selection handle at the bottom edge of the element frame concerned.
When increasing the font size, ensure that there is sufficient space available underneath the element.

The width of the screen element frame can be scaled as required by dragging the selection handle on the sides.

## Associated variable tab

On the Associated variable tab you define the Boolean variable for activating the numerical value.

## Number range/format tab

The Number range/format tab is used for defining the following:

- Value range,
- Unit of measure,
- Scaling range,
- Display change and
- Showing a signed value.


## Visibility tab

The Visibility tab enables you to make the screen element invisible by means of an associated variable.

## Example - numerical value:

The program consists of nine screens that can be selected via the Cursor buttons $\wedge$ and $\vee$. The screen change is defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333).

Standard path: C:IProgramme\Moeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Zahlenwert_BspProg_01.e40

## Screen 1:

This screen shows six simple output formats of the numerical values and provides an overview of the Number range/ format properties. The first screen shows six numerical values. These are associated with the on-delayed timing relay T04 (Associated variable tab) for which a time range of 4 seconds is set. The actual value of the timing relay is provided at its QV output (FB parameter) which is then displayed in the appropriate number format. The variable type of the associated variable is DWord.

Table 11: Numerical value and output formats

## Left column <br> Right column

Numerical value 1

- Value range: 0 to 50000
- Unit: None
- Scaling range: None
- Always show sign: No

Numerical value 2

- Value range: 0 to 50000
- Unit: ms
- Scaling range: None
- Always show sign: No

Numerical value 3

- Value range: 0 to 50000
- Unit: ms
- Scaling range: None
- Always show sign: Yes

Numerical value 1

- Value range: 0 to 4000
- Unit: None
- Scaling range: 0 to 4
- Decimal places: 0
- Always show sign: No

Numerical value 2

- Value range: 0 to 4000
- Unit: s
- Scaling range: 0 to 4
- Decimal place: 1
- Always show sign: No

Numerical value 3

- Value range: 0 to 4000
- Unit: s
- Scaling range: 0 to 4
- Decimal places: 2
- Always show sign: Yes

| Timer | 4 |
| :---: | :---: |
| 1873 | 2 |
| 1873 ms | 1.9 s |
| +1873 ms | +1.87 s |

Figure 160: Output formats

## Screen 2:

Screen 2 shows a simple example of the visualization of timing relay times using the function block parameter (FB parameter) from the Associated variable tab. The screen contains three numerical values. These are associated with the QV output of timing relay T04.

Table 12: Numerical value - visualization of timing relay times

| Numerical <br> value 1: | Start value of the timing relay T04 <br> FB parameter: I2 (zero as input I2 is not <br> assigned with on-delayed relays!) |
| :--- | :--- |
| Numerical | Setpoint of the timing relay T04 <br> value 2: |
| FB parameter: I1 (4000 as input I1 is assigned <br> with the constant $4 \mathrm{~s}(=4000 \mathrm{~ms})$ in the <br> function block editor) |  |
| Numerical <br> value 3: | Actual value of the timing relay T04 <br> FB parameter: QV (display of value present at <br> the function block output) |

In order for the values to be displayed meaningfully, "ms" (milliseconds) is entered in the Unit of measure field in the Number range/format tab.

```
Start Val Oms
Setpoint 4000ms
Act Val 1452ms
```

Figure 161: Timing relay times

## Screen 3:

Screen 3 shows an example of outputting analog values (here IA3) on the display. Note the Scaling range field on the Number range/format tab.

The screen contains three numerical value that output the analog value in different formats. The values are associated with the analog input IA3 (Associated variable tab) which has a value provided as a DWord variable at the QV output (FB parameter).
All numerical values are assigned a value range from 0 to 1019 as this scan range is defined by the connected potentiometer.

Table 13: Numerical value - analog value output

| Numerical <br> value 1: |  | Display of the analog value (0 to 1019) <br> Numerical <br> value 2: |
| :--- | :--- | :--- |
|  | Display of the analog value with the scaling <br> range 0 to 10, two decimal places, unit of <br> measure "V" (Volt) |  |
| Numerical <br> value 3: |  | Display of the analog value with the scaling <br> range -5 to +5, two decimal places, unit of <br> measure " "V" (Volt), signed |

```
Analog input I3
Figure }35
    0 to 10 3.51V
-5to+5 -1.49V
```

Figure 162: Analog value output

## Screen 4:

Screen 4 shows an example of the output of analog values (here IA3) on the display which is an extension of screen 3. For greater simplicity, all the basic settings of the scaling range were taken from screen 3.

Note the Numerical display setting in the Display change area of the Number range/format tab.

Table 14: Numerical value - extended analog value output

| Numerical value 1: | Display of the analog value (0 to 1019) |
| :---: | :---: |
| Numerical value 2 : | Display of the analog value with the scaling range 0 to 10 , two decimal places; unit of measure "V" (Volt); Always show sign: yes; Display change - Detection via: internal limit value comparison; Numerical display: flashing |
| Numerical value 3 : | Display of the analog value with the scaling range -5 to +5 , two decimal places, unit of measure "V" (Volt); Always show sign: no; Display change - detection via: internal limit value comparison; Numerical value display: inverted |

```
Analog input I3
Figure 0
Flashing +0.00V
Invert -5.00V
```

Figure 163: Extended analog value output

## Screen 5:

Screen 5 shows an example of the output of analog values (here IA3) on the display with the visibility option switched via I1 and I2. The settings for this were defined on the Visibility tab. Two numerical values are shown on the screen that output the analog value in different formats. These values are associated with analog input IA3 which provides a Word type variable for further processing.

Table 15: Numerical value - analog value output with invisibility activated

| Numerical value 1: | Display of the analog value with the scaling range 0 to 10; two decimal places; Unit of measure "V" (Volt); make number invisible via Boolean operand I1; make contact bit logic (Visibility tab) |
| :---: | :---: |
| Numerical value 2 : | Display of the analog value with the scaling range -5 to +5 ; two decimal places; Unit of measure "V" (Volt); make number invisible via Boolean operand I2; make contact bit logic (Visibility tab) |

```
Invisibility
via I1
via I2 1.29v
```

Figure 164: Make invisible function

## Screen 6:

Screen 6 shows a simple example of the display change using an external trigger. In this example input 11 is the external trigger. The screen contains two numerical values. These are associated with the output QV of timing relay T08 which is a DWord type variable. The timing relay is run in a loop from 0 to 10 seconds.

Table 16: Numerical value - analog value output with display change via external trigger input

| General <br> settings: | Value range from 0 to 11000; unit of measure: <br> s (seconds); scaling range from 0 to 11, two <br> decimal places; display change active; <br> detection via external trigger input |
| :--- | :--- | :--- |
| Left numerical <br> value: | Display of timing relay value T08, <br> I1 actuated: the numerical value flashes as the <br> external trigger is set for flashing display via <br> Boolean operand I1 |
| Right <br> numerical <br> value: | Display of timing relay value T08; <br> I1 actuated: the numerical value is inverted as <br> the external trigger is set for inverted display <br> via Boolean operand I1 |


| Display |
| :---: |
| change (I1) |
| external trigger |
| $3.37 \mathrm{~s} \quad 3.37 \mathrm{~s}$ |

Figure 165: External trigger

## Screen 7:

Screen 7 shows a simple example of the display change using an internal limit value comparison. The screen shows two numerical values that show the output values (QV output) of the timing relay T08. The variable type is DWord. The timing relay is run in a loop from 0 to 10 seconds.

A value range from 0 to 11000 is defined in the Number range/format tab. The unit of measure is set to "s" (seconds). The scaling range is defined from 0 to 11 with 2 decimal places. The display change is active and is detected via the internal limit value comparison. The numerical value display flashes for the left numerical value and is inverted for the right numerical value.

Table 17: Numerical value - analog value output with display change via internal limit value comparison

| Left numerical value: | The numerical value flashes in the range from 0 to 3 and from 7 to 10 . The upper limit value is set to 7 (the display change occurs from numerical value 7 to 10) in the Display change tab and the lower limit value is set to 3 (the display change occurs from numerical value 0 to 3 ). <br> There is therefore no display change between 3 and 7 . |
| :---: | :---: |
| Right numerical value: | The numerical value is inverted in the range from 0 to 3 and from 7 to 10 . The upper limit value is set to 7 (the display change occurs from numerical value 7 to 10) in the Display change tab and the lower limit value is set to 3 (the display change occurs from numerical value 0 to 3 ). <br> There is therefore no display change between 3 and 7 . |


| No display change | Display change |
| :--- | :--- |
| Display change <br> (without 3-7s) <br> internal trigger <br> $6.57 \mathrm{~s} \quad 6.57 \mathrm{~s}$ | Display change <br> (without 3-7s) <br> internal trigger <br> $0.95 s$ |

Figure 166: Display change via internal limit value comparison

## Display <br> Marker word1 (C1) <br> 16

## Screen 8:

Screen 8 shows an example of outputting a marker word. The numerical value in the screen is associated with marker word MW01. The variable type is Word.

A value range from 0 to 999 is defined in the Number range/ format tab. The timing relay T09 switches the counter C01 ( $\rightarrow$ circuit diagram in EASY-SOFT-PRO) every two seconds. The output QV of the counter function block writes the data to marker word MW01 (defined in the Parameters tab in the Function block output area). If the upper switch value SH (38) is reached, the counter resets itself.

In EASY-SOFT-PRO the contents of the marker can be viewed both in decimal and hexadecimal format. Only decimal format, however, is shown in the display!

Overflow signal
Timer 4

-     -         - ms



## Screen 9:

Screen 9 shows an example of how to display a value overflow. The associated variable is the QV output of timing relay T04. The variable type is DWord. The timing relay runs from 0 to 4000 ms . A value range from 0 to 3000 and "ms" as unit of measure are defined in the Number range/format tab. This causes a value overflow as soon as 3000 ms is exceeded. This is indicated in the display by an overflow signal.

## Screen 10:

Screen 10 shows an example of how to display a value underflow. The associated variable is the QV output of counter C02. The variable type is DWord. The counter C02 is triggered by a flashing pulse from timing relay T07. The counter counts down from 12 to 0 . A value range from 6 to 12 and " mm " as unit of measure are defined in the Number range/format tab. This causes a value underflow as soon as 6 mm is undershot. This is indicated in the display by an underflow signal.

## Value entry

This screen element enables you to enter numerical setpoint values on the device during operation and thus make interventions in a process. The process value is thus entered via the set variable linked in the program. The MFD saves the entered value internally. The value is processed by the program and displayed until it is modified again by the operator or the program. Without an operator entry this mask element functions like the numerical value mask element and therefore displays the value of the associated set variable.

When you start to enter a value on the MFD device, the entry field shows the last variable value. You start the entry by pressing OK. This activates Selection mode in which you can use the cursor buttons to move between the value entry elements of a screen. The order of the selected elements is from the back to the front. This order is defined by their positioning and can be altered in the toolbar. Pressing OK once more activates Entry mode.

## Value and scaling range

The value range defines the range that is to be displayed. If the values are below or above this range, the MFD activates an underflow or overflow signal.

The scaling range is used for scaling the value range. The lower and upper values of the scaling range are assigned to the lower and upper values of the value range respectively. The MFD displays the value range if a scaling range has not been defined.

Examples:
In order, for example, to display the value range (0 to 255) of a counter as a percentage ( 0 to $100 \%$ ), enter " 0 " as the minimum value and " 255 " as the maximum value in the Value range field. Enter "\%" as the unit of measure. Activate the Scaling range field and enter " 0 " as the minimum value and " 100 " as the maximum value.

In order, for example, to display the value range (0 to 120) of a timing relay in minutes ( 0 to 2 min ), enter " 0 " as the minimum value and "120" as the maximum value in the Value range field. Enter "min" as the unit of measure. Enter " 0 " in the activated Scaling range field as the minimum value and " 120 " as the maximum value.

## Programming in EASY-SOFT-PRO:

- Hold down the left mouse button and drag the Value entry screen element into the screen.
- Position the mouse above the screen element and move it to the required position with the left mouse button depressed.

The height of the screen element frame depends on the font size selected. Three sizes are available:

- Normal font,
- Double font and
- Quadruple font.

You can change the font size by activating the context menu (right mouse button) or by dragging the selection handle at the bottom edge of the element frame concerned. When increasing the font size, ensure that there is sufficient space available underneath the element.

The width of the screen element frame can be scaled as required by dragging the selection handle on the sides.

## Set variable tab

On the Set variable tab you define the Boolean variable you wish to set.

## Number range／format tab

The Number range／format tab is used for defining the following：
－Value range，
－Unit of measure，
－Scaling range and
－Input format．
The display of the value sign can be forced．

## Visibility tab

The Visibility tab enables you to make the screen element invisible via an associated variable．

## Operability tab

In the Operability tab，select the associated variable for disabling the entry element．

## Example program－value entry

The program consists of seven screens that can be selected using the Cursor buttons $\wedge$ and $\vee$ ．The screen change was defined in the Button editor（ $\rightarrow$ Section＂Button editor＂， Page 333）．When the MFD is in RUN mode，you can change values that are processed in the program by using the Cursor buttons〈〉へレ．The MFD shows the actual values in the display．

In order to change values，the MFD must first switch to Selection mode．In Selection mode you can select the value entry element containing the values you wish to change．
－Press OK to switch the MFD to Selection mode．Use ESC to exit Selection mode．

The selected value entry element will flash．If several value entry elements are present，use the Cursor buttons く〉へ へ to select the required element（ $\rightarrow$ Screen 7）．
－Press the OK button to move from Selection mode to Entry mode．

- Move to the required position using the Cursor buttons < and $>$, change the value with the Cursor buttons $\wedge$ and $\vee$.
- Accept the modified value by pressing OK. Press ESC if you wish to retain the previous value. In both cases you return to Selection mode and can exit by pressing ESC.

The circuit diagram contains timing relay T01 which triggers counter CO2. When the counter reaches the upper switch threshold SH, it switches output Q1 to 1. The value of the counter's function block output QV is transferred to marker word MW06. The upper setpoint SH is associated with marker word MW07 and the preset actual value SV with marker word MW05. In RUN mode, the marker words are where the actual data is stored and where new data is written via the value entry elements. The counter can be reset at any time via input I . 11 (rising edge) is used to accept the value in marker word MW05 as a new preset actual value SV . As there is no setpoint value in marker word MW07 (switch value for Q1) when the program is started, this is interpreted as switch value "zero", and output Q1 is switched immediately to 1 .

Standard path: C:IProgramme\Moeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Werteingabe_BspProg_01.e40


## Screen 1:

Screen 1 illustrates the value entry option using the set variable marker word MW07 (switch value for Q1). The value entry element is enlarged on the display. A value range from 0 to 9999 and Allow digit selection as input format are defined in the Number range/format tab. Input 101 is assigned make contact bit logic in the Operability tab. The value is written to marker word 7 and accepted by counter input SH. Q1 is set to 1 if the counter actual value QV is greater than or equal to the upper setpoint SH . If the actual value already has a higher value than the switch value you can reset the counter via I2. Q1 is immediately reset to 0 and is not active again until the switch value is reached.

## Screen 2:

Screen 2 illustrates the activation of the value entry via the set variable marker word MW05 (preset actual value SV). After you have entered a new value, this is written to marker word MW05 by actuating I1. This is associated with the preset actual value SV of counter CO . When transferred, the actual value QV switches to the SV value entered and continues counting from this value.

Set entry: 80

|  |  | Set |
| :--- | :---: | :---: |
| QV | Entry (OK) |  |
| 304 | 80 |  |
|  | Transfer I1 |  |

Transfer of value

|  |  |  | Set |
| :---: | :---: | :---: | :---: |
| $\mathbf{Q V}$ | Entry(OK) |  |  |
| 80 | 80 |  |  |
|  | Transfer I1 |  |  |

Figure 167: Transfer of value when I1 closes

## Screen 3:

Screen 3 shows an example from the Number range/format tab, particularly the Scaling range area and Input format area $\rightarrow$ Allow digit selection. You can enter any value from 0.00 to 10.00 (Allow digit selection). After I1 closes, the preset actual value SV is transferred. When transferred, the actual value QV switches to the SV value entered and continues counting from this value. The maximum scaling range (10.00) is assigned to the maximum value range (9999). The value of QV will therefore jump to 9999 when the entered value is 10.00 and I 1 is actuated.

Value entry $=10.00$

| Allow digit selec |  |
| :---: | :---: |
|  | Set entry |
| QV | (0K) |
| 15 | 10.00 |

QV value $=9999$


Figure 168: Transfer of value with Allow digit selection set

## Screen 4:

Screen 4 shows an example of the Number range/format tab, particularly the Scaling range area and Input format area $\rightarrow$ Fixed step width. You can enter any value from 0.00 to 10.00 in step widths of 0.50 (fixed step width). After I1 closes, the preset actual value SV is transferred. When transferred, the
actual value QV switches to the SV value entered and continues counting from this value. The maximum scaling range (10.00) is assigned to the maximum value range (9999). The value of QV will therefore jump to 9999 when the entered value is 10.00 and I 1 is actuated.

Value entry

| Step width |  |  |
| :---: | :---: | :---: |
| Set entry |  |  |
| QV | (OK) |  |
| 16 | 8.50 |  |

Transfer of QV value

| Step | width |
| :---: | :---: |
| Set entry |  |
| QV | (OK) |
| 8500 | 8.50 |

Figure 169: Transfer of value with fixed step width set

## Screen 5:

Screen 5 shows an example of the Visibility tab. If 14 is closed, the value entry element is made invisible. The make contact bit logic is set. When using break contact bit logic, this is the same as a "visible circuit". Even when invisible the element is operable and value entry is still possible.

Set value visible

| Set value entry |  |
| :---: | :---: |
| Invisible |  |
| QV via I4 |  |
| 299 | 1037 |

Set value invisible

| Set value entry |
| :---: |
| Invisible |
| QV via I4 |
| 299 |

Figure 170: Making the value entry element invisible

## Screen 6:

Screen 6 shows an example of the Operability tab. (visibility set as in screen 5.) When I3 closes, the entry function is disabled. Make contact bit logic is selected. If the value entry element is disabled, you can still select it (flashing) but Entry mode (changing values) is disabled. If the value entry element is in Entry mode when I3 closes, the MFD automatically switches to Selection mode. When using break contact bit logic, entry is only possible if I 3 is actuated. The value entry element is made invisible via 14 . However, it is still operable and values can still be modified.

13 not actuated

| Set value entry disabled |  |
| :---: | :---: |
| Qv | via 13 |
| 249 | 1037 |

13 actuated

| Set value entry |  |
| ---: | ---: |
| disabled |  |
| QV | via I3 |
| 249 | 1037 |

Figure 171: Value entry element disabled

## Message text

This mask element can be used to display texts that are stored beforehand in a text table inside the program. A text can have a maximum length of 16 characters. Additional blanks are added to the displayed text if it is shorter than the element. A message text is used for indicating status changes in the process. In order to visually indicate changes of this kind, you can link message texts with a variable (associated variable). When the variable concerned assumes a specified value, the MFD outputs the appropriate message text. The default text is output if the variable assumes a value that is not assigned to a text.

## Programming in EASY-SOFT-PRO:

- Hold down the left mouse button and drag the Message text screen element into the screen.
Position the mouse above the screen element and move it to the required position with the left mouse button depressed.

The height of the screen element frame depends on the font size selected. Two sizes are available:

- Normal font size and
- Double font size.

You can change the font size by activating the context menu (right mouse button) or by dragging the selection handle at the bottom edge of the element frame concerned. When increasing the font size, ensure that there is sufficient space available underneath the element.

The width of the screen element frame can be scaled as required by dragging the selection handle on the sides. containing the corresponding texts of all languages selected. This can be checked easily in the screen overview.

## Associated variable tab

On the Associated variable tab you define the variable with the value for activating the output text.

## Message texts tab

Assign in the Message texts tab the value of the associated variable for its corresponding message text, and select the language and the default text.

## Visibility tab

The Visibility tab enables you to make the screen element invisible via an associated variable.

## Display change tab

The Display change tab offers the following display forms of the message, which can be controlled with an associated variable:

- flashing,
- Inverted.


## Example program 1 - activating message texts with a Boolean variable

The program consists of seven screens that can be selected using the Cursor buttons $\wedge$ and $\vee$. The screen change was defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333). The circuit diagram uses six on-delayed timing relays that activate outputs Q1 to Q4 and LED03 in succession after an elapsed time. This operation is run in a continuous loop since timing relay T06 resets all timing relays after a set time. The message texts are controlled in all screens by means of Boolean variables. As these only have two states ( $0 / 1$ ), only two different messages can be output via each message text element. If other variable types are used, the number of possible message texts can be increased accordingly.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Meldungstext_BspProg_01.e40

## Screen 1:

Screen 1 illustrates the activation of message texts by means of the associated variable. The output of two different texts in one message text element is also illustrated. The first screen contains four message text elements. These are activated via the outputs Q1 to Q4 and appear in the display. The Message text tab is used to assign the message to be output with a particular state of the associated variable. In this example, if $\mathrm{Q} 1=0$, the message "no data" is output, and "Information" is output if $\mathrm{Q} 1=1$. All other message text elements have only one message text which is displayed when the corresponding output $\mathrm{Q} . .=1$.

Q1 $=0$
Q1, Q2, Q3 = 1
no data
Information
with
Boolean
operands!

Figure 172: Text display using Boolean operands

## Screen 2/Text 1

## Screen 2:

Screen 2 illustrates the activation of message texts by means
Text 2 of the associated variable. A message text is also enlarged in the display. The mask contains two message text elements. These are activated via the outputs Q1 and Q3 and appear in the display. The texts are only displayed if the corresponding outputs are 1 . No message is assigned to output status 0 .

## Screen 3:

Screen 3 illustrates the control of an enlarged message text element containing two message texts that are assigned to the two states of output Q2.
Q2 $=0 \rightarrow$ Message text: Q2 OFF
Q2 $=1 \rightarrow$ Message text: Q2 ON

## Q2 OFF

## Q2 ON

Figure 173: Message texts using an associated variable

## Screen 4:

Screen 4 is basically the same as screen 3 except that it also includes the Visibility element. The message text can be made invisible via input I1. The setting for this was made in the Visibility tab. Make contact bit logic is selected. With break contact bit logic, the message text element is made visible when actuating 11 .


Figure 174: Hiding a message text

## Screen 5:

Screen 5 is basically the same as screen 4 except that the Invisible function has been replaced with Flash as the Display change function. When input $12=1$ (make contact bit logic), the message text can be made to flash.

12 not actuated
flashing
via I2!
Q2 0N

12 actuated
flashing
via 12!
Q2 OFF

Figure 175: Message text flashing

## Screen 6:

Screen 6 is basically the same as screen 5 except that Inverted was selected for the Display change function. When input $\mathrm{I} 2=1$ (make contact bit logic), the message text in this screen can thus be inverted.

I2 not actuated
12 actuated

| invert |  |
| :---: | :---: |
| via | $12!$ |
| 02 | 0 N |

invert via 12!

Figure 176: Message text inverted

## Screen 7:

Screen 7 is basically the same as screen 6 except that the inverted display is controlled by timing relay T07 (asynchronous clock pulse). The text flashes in the display at different pulse and pause times.

```
flashing
    via timer
    Q2 ON
```



Figure 177: Message text inverted flashing

## Example program 2 - activating message texts with a timing relay

The program consists of two screens containing message texts. The screens are activated automatically in succession in the display. The circuit diagram uses six on-delayed timing relays T01 to T06 that activate outputs Q1 to Q4 and LE03 in succession after an elapsed time. This operation is run in a continuous loop since timing relay T06 resets all timing relays after a set time.

The screen activation is executed via counter C01. This has the value 1 as the upper setpoint SH. The counter values 0 and 1 are therefore used as activation values for the two screens. The resetting of timing relays T01 to T06 by T06 activates counter C01 which then reaches the value 1 and therefore has already reached its upper setpoint. This then causes screen 2 to be displayed. The on-delayed timing relay T08 resets counter C01 back to 0 after the set time ( 0.8 s ) has elapsed. Screen 1 is then displayed again and timing relay T08 is no longer activated. This loop is repeated continuously.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]|Samples\AWB2528-1480\

Program: Meldungstext_BspProg_02.e40

Start Machine 1
Start Machine 2
Start Machine 3
Start Machine 4

## RESTART

## Screen 1:

The first screen contains four message text elements. These are activated in succession via the outputs Q1 to Q4 and appear in the display.

## Screen 2:

The second screen contains one message text element with one message text.

## Example program 3 - message text with a display change

The program consists of two screens containing message texts. The screens are activated automatically in succession in the display. This program is an extension of the program Meldungstext_BspProg_02.e40. The extension consists of two messages being contained in one message text element in screen 2 , which are also toggled automatically. A display change is also executed in one message text. The circuit diagram uses six on-delayed timing relays T01 to T06, that activate outputs Q1 to Q4 and LE03 in succession after an elapsed time. This operation is run in a continuous loop since timing relay T06 resets all timing relays after a set time. The make contacts (C01ZE) of the counter in the circuit diagram are switched directly before the outputs Q1 to Q4 as well as before LE 3 . The outputs are only meant to be active with screen 1 , i.e. when the counter has the value 0.

The screens are activated via counter C01. This has the value 2 as the upper setpoint SH , thus providing the counter values 0,1 and 2 . Counter value 0 activates mask 1 , counter value 1 activates the first message text in screen 2 and counter value 2 the second message text in screen 2 . When the timing relays T01 to T06 are reset, the counter receives a pulse and is incremented by one value. If the counter C01 reaches its upper setpoint with the second pass, this starts the on-delayed timing relay T08. This then resets the counter C01 to 0 after the set time has elapsed ( 0.8 s ). This loop is repeated continuously.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Meldungstext_BspProg_03.e40

```
Start Machine 1
Start Machine 2
Start Machine 3
Start Machine 4
```


## Screen 1:

The first screen contains four message text elements. These are activated in succession via the outputs Q1 to Q4 and appear in the display.

## Screen 2:

The second screen contains a message text element with two message texts. The message texts are activated via counter values 1 and 2 . The first resetting of timing relays T01 to T06 by T06 also activates counter C01 which then reaches the value 1. The Error message text is then displayed. This flashes since Flashing was set on the Display change tab and with function block parameter FB (counter value $<=1$ ). RESTART is displayed if the counter value of C01 is 2 .
 RESTART

Figure 178: Message text as status display

## Example program 4 - activating message texts with a default text

The program consists of two screens containing message texts. The screens are activated automatically in succession in the display. This program is an extension of the program Meldungstext_BspProg_03.e40. The extension consists of the display of a default text in screen 2 when the counter takes on values that are not assigned to any messages. The circuit diagram uses six on-delayed timing relays T01 to T06 that activate outputs Q1 to Q4 and LE03 in succession after an elapsed time. This operation is run in a continuous loop since timing relay T 06 resets all timing relays after a set time. Counter make contacts (C01ZE) in the circuit diagram are switched directly before outputs Q1 to Q4 and LE03 so that the outputs are only active if screen 1 is active when counter C01 has the value 0 .

The screen activation is executed via counter C01. This has the value 4 as the upper setpoint SH . This therefore generates the counter values $0,1,2,3$ and 4 . The counter is activated with every reset of timing relays T 01 to T06. The counter value 0 activates screen 1 and counter value 1 screen 2 . Screen 2 remains activated when the counter value is 2,3 or 4 , and counter value 2 and 3 cause the default text to be displayed as there are no message text assigned to these values. The counter value 4 causes the message text RESTART to be displayed in screen 2. If the counter C01 reaches its upper setpoint with this value, this starts the ondelayed timing relay T08. This then resets the counter C01 to 0 after the set time of 0.8 s has elapsed. This loop is repeated continuously.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Meldungstext_BspProg_04.e40

```
Start Machine 1
Start Machine 2
Start Machine 3
Start Machine 4
```


## Screen 1:

The first screen contains four message text elements. These are activated in succession via the outputs Q1 to Q4 and appear in the display.

## Screen 2:

The second screen contains a message text element with two message texts. The message texts are activated via counter values 1 and 4. A default text "default" has also been defined.

- Status value 1. "Error" message text
- Status value 2 and 3: "default" as default text
- Status value 4. "RESTART" message text

If the status value of C 01 is 1 , the message "error" flashes as the function block parameter FB has been set in the Display change area in the Display change tab. The function block parameter switches if the SL value (lower switch threshold) of the counter is reached ( $\rightarrow$ EASY-SOFT-PRO function block editor, counter C01).


Figure 179: Message text with default text

## Example program 5 - several message texts in one text element

The program consists of three screens that you can select via the Cursor buttons $\wedge$ and $\vee$. The screen change was defined in the Button editor ( $\rightarrow$ Section "Button editor", Page 333). The purpose of this program is to display several messages in one message text element. The Visibility and Display change tabs are also covered. The clock pulse T01 activates counter C01. This counts up to 7 and then resets itself automatically. This therefore produces a continuous loop that activates the individual messages.

Standard path: C:IProgrammelMoeller SoftwarelEASYSOFT 5 [Pro]\Samples\AWB2528-1480\

Program: Meldungstext_BspProg_05.e40

## Screen 1:

The first screen contains a message text element with six message texts.

- Status value 1: Message text "These"
- Status value 2: Message text "are six"
- Status value 3: Message text "message texts"
- Status value 4: Message text "in one"
- Status value 5: Message text "message text"
- Status value 6: Message text "element!!!".

It can be seen that the messages can be moved within the entry field.

## Screen 2:

Screen 2 is almost the same as screen 1 apart from one addition which enables the message text element to be made invisible via I1 (make contact bit logic). The use of the break contact bit logic would make the element visible.
11 not actuated

| Invisible via |
| :---: |
| I1! |
| Message texts |

11 actuated


Figure 180: Make message text invisible

## Screen 3:

Screen 3 is almost the same as screen 1 apart from one addition, by which the actuation of I1 causes the first message text element to flash and the second message text element to be inverted.

```
Display 
    Message texts
    Message texts
```

```
Display
change via I1!
    are six
    are six
```

Figure 181: Making message text flash or inverted

## Button editor

All buttons of the MFD can be assigned in the button editor of the EASY-SOFT-PRO with appropriate functions which overwrite the basic button functions. Carry out the following steps to associate the buttons of the MFD:

- Select an operable screen element,
- Display backlight,
- Screen change,
- Password logout,
- Set variable to fixed value,
- Increment variable,
- Decrement variable,
- Changeover relay.


## Select an operable screen element

If a screen with a value entry is present, you can jump to these value entry elements directly. The value entry element is in Entry mode so that you can change the value directly.

## Display backlight

The brightness of the display backlight can be adjusted in stages.

## Screen change

This function enables the operator to change to other saved screens during operation. If the operator is to be able to move between several screens using a button function you must assign a screen change button element to an operator button in each of these masks.

## Password logout

The Screen overview contains the Passwords tab for defining a logout time. This logout time is skipped with the Password logout function.

## Set variable to fixed value

This function assigns a fixed value to the selected variable, such as for resetting to a defined value.

## Increment variable

The variable value is increased by the set step width.

## Decrement variable

The variable value is decreased by the set step width.

## Changeover relay

The state of a variable or a function block input is negated.

## 6 easy-NET Network, COM-LINK Serial Connection

## Introduction to easy-NET

All MFD-Titan units have an easy-NET network interface connection. This network is designed for eight stations.

Using the easy-NET you can:

- Process additional inputs and outputs.
- Implement faster and improved control using decentralised programs.
- Synchronise date and time
- Read and write inputs and outputs.
- Send values to other stations.
- Receive values from other stations.
- Load programs from or to any station.

The easy-NET network is based on the CAN network (Controller Area Network). CAN is specified by the ISO 11898 standard. CAN has the following in-built features:

- Message oriented transmission protocol.
- Multimaster bus access capabilities with non-destructive bitwise bus arbitration via priority messaging (Arbitration: An instance which defines which hardware can use the bus next).
- Multicast broadcast messaging with receiver side message filtering.
- High level of real-time capability (short reaction time for high priority messages, short fault message get times).
- Functionality in environments with severe interference (short block lengths).
- High level of error security.

CAN has been used as the basis for the design of the easy-NET network. The messages have been adapted and optimised to suit the requirements of the MFD-Titan environment.

## easy-NET network topologies, addressing and functions

The easy-NET allows the configuration of a line topology. There are two wiring methods which can be used for the required addressing options:

- "Loop through the unit" wiring arrangement,
- Wiring arrangement using a T connector and a spur line.


## Loop through the unit wiring method

With this wiring method it is possible to implement the addressing of the stations via station 1 or the EASY-SOFT (-PRO). If the line is interrupted, the network is no longer operational from this point in the network.

## T connector and spur line

Each device must be addressed individually with this wiring method by:

- Downloading the program,
- Downloading the address with EASY-SOFT (-PRO),
- Using the display or
- The device is already assigned an address.

If a spur line is removed on a station, all other devices in the network remain functional.
$\rightarrow$ The spur line between the T connector and the device must not exceed 0.3 m . Otherwise communication via easy-NET may be impaired.

Topology and addressing examples

| Physical location, place | Station number |  | Loop through the unit | T connector and spur line |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Example <br> 1 | Example <br> 2 |  |  |  |
| 1 | 1 | 1 | 号  <br> easy800 <br> MFD easy...E |  | easy...E |
| 2 | 2 | 3 |  | $$ | easy...E |
| 3 | 3 | 4 |  | $$ | easy...E |
| 4 | 4 | 8 | easy800 <br> MFD easy...E | $$ | easy...E |
| 5 | 5 | 7 |  |  | easy...E |
| 6 | 6 | 2 |  |  | easy...E |
| 7 | 7 | 6 |   <br> easy800  <br> MFD easy...E | $$ | easy...E |
| 8 | 8 | 5 |  号 <br> easy800 <br> MFD easy...E | $$ | easy...E |

- Example 1: physical location is the same as the station number
- Example 2: physical location is not the same as the station number (apart from location 1 being the same as station 1).
$\longrightarrow \quad \begin{aligned} & \text { Physical location } 1 \text { is always assigned as station } 1 \text {. Station } \\ & 1 \text { is the only station which must be present. }\end{aligned}$

Position and addressing of the operands via easy-NET

| Stations | Basic unit |  | Local expansion |  | Network bit data |  | Network word data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Input I | Output $\mathbf{Q}$ | Input <br> R | Output S | Input <br> RN | Output <br> SN | Receive | Send |
| 1 | $\begin{aligned} & 111 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & 1 \text { Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & \hline 1 \mathrm{R} 1 \\ & \text { to } 16 \end{aligned}$ | 1 S 1 to 8 | $\begin{aligned} & 2 \text { to } 8 \text { RN } \\ & 1 \text { to } 32 \end{aligned}$ | 2 to 8 SN 1 <br> to 32 | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \hline \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 2 | $\begin{aligned} & 211 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & \hline 2 \text { Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & \text { 2 R } 1 \\ & \text { to } 16 \end{aligned}$ | 2 S 1 to 8 | 1, 3 to 8 RN 1 <br> to 32 | $\begin{aligned} & 1,3 \text { to } 8 \\ & \text { SN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 3 | $\begin{aligned} & \hline 3 \mid 1 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & \hline 3 \text { Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & 3 \mathrm{R} 1 \\ & \text { to } 16 \end{aligned}$ | 3 S 1 to 8 | $\begin{aligned} & 1,2,4 \text { to } \\ & 8 \text { RN } 1 \text { to } \\ & 32 \end{aligned}$ | $\begin{aligned} & 1,2,4 \\ & \text { to } 8 \text { SN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 4 | $\begin{aligned} & \hline 4 \mid 1 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & \text { 4Q Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & 4 \mathrm{R} 1 \\ & \text { to } 16 \end{aligned}$ | 4 S 1 to 8 | $\begin{aligned} & 1 \text { to } 3,5 \\ & \text { to } 8 \text { RN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & 1 \text { to } 3,5 \\ & \text { to } 8 \text { SN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 5 | $\begin{aligned} & \hline 5 \text { I } 1 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & \text { 5 Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & 5 \text { R } 1 \\ & \text { to } 16 \end{aligned}$ | 5 S 1 to 8 | 1 to 4, 6 to 8 RN 1 to 32 | $\begin{aligned} & 1 \text { to } 4,6 \\ & \text { to } 8 \text { SN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 6 | $\begin{aligned} & \hline 6 \text { I } 1 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & \hline 6 \text { Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & 6 \mathrm{R} 1 \\ & \text { to } 16 \end{aligned}$ | 6 S 1 to 8 | 1 to 5,7 , 8 RN 1 to 32 | $\begin{aligned} & 1 \text { to } 5,7, \\ & 8 \text { SN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 7 | $\begin{aligned} & \hline 7 \mid 1 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & \hline 7 \mathrm{Q} 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & 7 \mathrm{R} 1 \\ & \text { to } 16 \end{aligned}$ | 7 S 1 to 8 | 1 to 6, 8 RN 1 <br> to 32 | $\begin{aligned} & 1 \text { to } 6,8 \\ & \text { SN } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |
| 8 | $\begin{aligned} & 8 \mathrm{l} 1 \\ & \text { to } 16 \end{aligned}$ | $\begin{aligned} & 8 \text { Q } 1 \\ & \text { to } 8 \end{aligned}$ | $\begin{aligned} & 8 \text { R } 1 \\ & \text { to } 16 \end{aligned}$ | 8 S 1 to 8 | $\begin{aligned} & 1 \text { to } 7 \text { RN } \\ & 1 \text { to } 32 \end{aligned}$ | 1 to 7 SN 1 to 32 | $\begin{aligned} & \text { GT } 1 \\ & \text { to } 32 \end{aligned}$ | $\begin{aligned} & \text { PT } 1 \\ & \text { to } 32 \end{aligned}$ |

$\rightarrow \quad$ The RN-SN connection is a point-to-point connection between the stations indicated. With RN and SN the number of the contact must have the same number as the coil. Example: 2SN30 from station 8 is sent to 8RN30 of station 2.

## $\rightarrow$

Every station with a circuit diagram has read access to the physical station inputs and outputs of other stations and can process them locally.

## Example 1

Station 1 is to read the input 11 of station 2 and write to output Q1 of station 2. Station 2 does not have a circuit diagram.


Figure 182: Circuit diagram in station 1

## Example 2:

Marker M 01 of station 4 is to switch the output Q1 of station 3 via the network. Both stations have a circuit diagram.


Figure 183: Circuit diagram in station 4: Set coil 01 in station 3


Figure 184: Circuit diagram in station 3: Get value from coil 01 in station 4

## Functions of the stations in the network

The stations on the easy-NET can have two different functions:

- Intelligent stations with their own programs (stations 1 to 8),
- Input/output devices (REMOTE IO) without their own program (stations 2 to 8 ).


## $\rightarrow$

 Station 1 must always have a circuit diagram.
## Possible write and read authorisation in the network

The stations have differing read and write authorisation in the easy-NET network according to their functions and configuration.

## Station 1

Authorised read access to all inputs and outputs of all stations regardless of the function. Observe the setting of SEND IO ( $\rightarrow$ Section "Send each change on the inputs/ outputs (SEND IO)", Page 343).

Authorised write access to the station's own local outputs.
Authorised write access to the physical digital outputs of the stations which are functioning as input/output devices.

Write authorisation to the network bit data 2 to 8 SN 1 to 32 .

## Stations 2 to 8 <br> Input/output device function <br> No read and write authorisation.

## Intelligent station function

Authorised read access to all inputs and outputs of all stations regardless of the function. Observe the setting of SEND IO $\rightarrow$ Section "Send each change on the inputs/ outputs (SEND IO)", Page 343).

Write authorisation to its own local outputs.
Write authorisation to the network bit data SN 1 to 32 .

Configuration of the easy-NET network
easy-NET can be configured so that it can be optimised for your application.

## Station number

The station number is identified as the easy-NET-ID: in the device. The station number can be set on devices with a display using the buttons on the MFD-Titan.

All the easy-NET settings are best carried out on station 1. The entire network can be configured via station 1. The configuration should only be carried out locally when a device is replaced.

Valid station numbers for operation are 01 to 08.
Station number $00=$ factory default setting
With station number 00, double address assignment cannot occur when an existing device is being exchanged.

## Transmission speed

The MFD-Titan device hardware allows you set transmission speeds between 10 and 1000 kBaud in specific stages. The length of all cables is determines the maximum permissible data transfer rate ( $\rightarrow$ chapter "Technical data", Page 428).

The data transfer rate is set under the BAUDRATE: menu item.

Possible baud rates are: $10,20,50,125,250,500$ and 1000 kB
$125 \mathrm{kB}=$ factory default setting

## Pause time, changing the write repetition rate manually

Every easy-NET network connection automatically determines the number of stations which are active on the network, the baud rate which is used and the total number of bytes which are transmitted. The minimum pause time which a device requires is automatically determined using this data in order to ensure that all devices can send their messages. If a pause time is to be increased, the value of the BUSDELAY: must be set greater than zero.

Value " 1 " doubles the pause time, value " 15 " will increase it by a factor of 16 .
$t_{\text {pnew }}=t_{\mathrm{p}} \times(1+\mathrm{n})$
$t_{\text {pnew }}=$ new pause time
$t_{\mathrm{p}}=$ pause time determined by the network
$\mathrm{n}=$ value on BUSDELAY
An increase in the pause time means that fewer messages (inputs, outputs, bit data, word data) are transferred per time unit.

The reaction speed of the entire controller depends on the baud rate, the pause time and the quantity of transferred data.

The smaller the amount of data transferred, the faster the reaction times of the system.

An increase in the pause time is only useful during commissioning. To ensure that the data for the power flow display is updated faster in the PC, a longer range for this data is created on the network within this pause time.

## Send each change on the inputs/outputs (SEND IO)

The SEND IO function should be used if you wish to send any change in input or output status immediately to all other network stations. SEND IO should be activated if intelligent stations have read access to the inputs and outputs of other stations (21 02, 8Q 01, etc.).

```
SEHO IO 
```

This means that the quantity of messages on the network can increase significantly.
$\rightarrow$
If high-speed counters are used, the SEND IO function should be deactivated. Otherwise the input data is written very rapidly onto the network as they change continuously, leading to unnecessary loading of the network.

If intelligent devices are required to exchange bit information, it should be implemented via RN and SN.

EEND IO $=$ factory default setting

## Automatic change of the RUN and STOP mode

REMOTE RUN should be activated if stations 2 to 8 are to automatically follow the mode change of station 1 during operation.
$\rightarrow$
Input and output devices must always have SEND IO activated, to ensure that station 1 always receives up-todate input and output data.
,
Intelligent stations with display only follow the operating mode change when the display is showing the Status display or a text.

The following is of utmost importance during commissioning!

## Attention!

If several engineers are commissioning a machine or system involving several spatially separated elements via the easy-NET network, it must be ensured that REMOTE RUN is not activated.

Otherwise unwanted machine or system starts may occur during commissioning. The associated events depend on the machines or systems involved.

FEHOTE FIUN $\sqrt{ }$ = factory default setting

## Input/output device (REMOTE IO) configuration

All devices are factory set for operation as input and output devices. This has the advantage that devices can be used immediately as I/O devices, regardless of whether they have a display or not. You only need to assign the station number. This can be implemented via EASY-SOFT (-PRO) or on a Station 1 with a display.

If you want to assign a device as an intelligent station on the network, the REMOTE IO should be deactivated.

## FENOTE IO

Figure 185: Remote IO deactivated

The standard settings for the input and output devices are:

| SEHE IO | $\checkmark$ |
| :---: | :---: |
| FEVTETE FUN | $\checkmark$ |
| FEVTE IO | $\checkmark$ |

Station number (easy-NET-ID) and baud rate can be specified via station 1.

## Station message types

The easy-NET network recognises various message types. They are:

- Output data of station 1 (Q., S.) which is sent to stations without programs.
- Network outputs and inputs sent and received between stations with programs (*SN, *RN).
- Data sent and received via the network between stations with programs (PT and GT function blocks).
- Inputs, outputs, station status (I, R, Q, S) transfers.
- Loading programs to and from every station.

The easy-NET network is based on a CAN (Controller Area Network) system. Each message type has its own ID. The message priority is determined via the respective ID. This is important in transmission borderline cases to ensure that all messages reach their destination.

## Transfer behaviour

## Network CPU data transfer to program image

The MFD-Titan network connection is equipped with its own CPU. Network data can therefore be processed whilst the program is running. After each program cycle, the status of
the network data is written to the operand image of the program and the send data is read from the image. The program runs through the next cycle with this data.

## Reading and sending the network data from the CPU

 The network CPU of the station reads every message on the network. If the message is relevant to the station, it is accepted into a message memory.If the content of a send message changes, it is sent. Transmission only occurs when there is no message on the network.
easy-NET is configured so that every station can send its messages. This means that the station must observe a pause time between sending messages. The pause time increases the higher the number of stations and the lower baud rate setting.

The number of stations is recognised by every station via a "sign of life" signal.

The following applies to fast message transfer:

- Set the fastest possible baud rate to suit the network length and cable cross-section.
- Fewer messages means faster messages.
- Avoid program downloads during the RUN mode.


## Signs of life of the individual stations and diagnostics

The inputs and outputs message type is used as a "sign of life" recognition to ensure that the state of a station can be recognised by other stations. The states of the inputs and outputs are sent cyclically and at the set baud rate, irrespective of the SEND IO setting. If the inputs and outputs of a station are not recognised by other stations after a time determined by the baud rate, the station is deemed to be disconnected until the next "sign of life" is recognised.

Evaluation occurs at the following intervals:

| Baud rate | Stations must send a <br> "sign of life" every ... <br> [KB] | Stations recognise the <br> absence of a "sign of <br> life" signal after <br> [ms] |
| :--- | :--- | :--- |
| 1000 | 60 | 60 |
| $\frac{600}{250}$ | $\frac{120}{125}$ | 240 |
| 50 | 600 | 180 |
| 20 | 1500 | 360 |
| 10 | 3000 | 720 |

If the absence of a "sign of life" is detected, the respective diagnostics contact is set to 1 .

| Diagnostics <br> contact | Station <br> number |  |
| :--- | :--- | :--- |
| ID 01 | 1 |  |
| ID 02 |  | 2 |
| ID 03 |  | 4 |
| ID 04 |  | 6 |
| ID 05 |  | 7 |
| ID 06 | 8 |  |
| ID 07 |  |  |
| ID 08 |  |  |

$\rightarrow$
If a station does not send a "sign of life" signal (station not available, easy-NET interrupted), the respective diagnostics contact ID .. is activated.

## Attention!

If the states of the inputs, outputs or data are required by a station without fail, the respective diagnostics contact should be evaluated and the information applied in accordance with its respective application.

If the respective diagnostics contacts are not evaluated, it may cause faults in your application.
$\rightarrow \quad \begin{aligned} & \text { The data to be read from a faulty station is set to } 0 \text { after } \\ & \text { the fault is detected. }\end{aligned}$

## Network transmission security

easy-NET is a CAN-based network. CAN is used in cars and commercial vehicles in all areas. The same fault recognition capability with data transfer applies as with CAN. A BOSCH study relating to undiscovered and corrupt messages determined the following:

The probability of non-discovery of a corrupted message (residual error probability) is: $<10^{-10}$ message error rate.

The message error rate depends on:

- Bus loading,
- Telegram length,
- Malfunction frequency,
- Number of stations.


## Example:

Network with:

- 500 kBaud,
- average bus load 25 \%,
- average operating time $2000 \mathrm{~h} / \mathrm{year}$,
- average error rate of $10^{-3}$, i.e.: 1 message is faulty every 1000 ,
- transmission of $1.12 \times 10^{10}$ messages per year of which $1.12 \times 10^{7}$ messages are faulty,
- residual error probability: $\mathrm{r}<10^{-10} \times 10^{-3}=10^{-13}$.

This means: one of $10^{13}$ messages is so corrupt that the fault cannot be recognised as such. For a network, this corresponds to a working time of approx. 1000 years.

Introduction to COM-LINK The COM-LINK is a point-to-point connection using the serial interface. This interface connection allows the reading of input/output states as well as the reading and writing of marker ranges. This data can be used for setpoint entry or for display functions. The stations of the COM-LINK have different functions. The active station controls the entire interface connection. The remote station responds to the requests of the active station. The remote station cannot distinguish whether the COM-LINK is active or whether a PC with EASY-SOFT-PRO is using the interface.

The two devices must support the COM-LINK, e.g.: MFD and easy800 devices from device version 04 are COMLINK enabled.

Only the MFD can be the active station in a COM-LINK connection.

Remote stations can be MFD or easy800.

## Topology

The following topologies are possible:
Two devices, MFD as active station and easy800 or MFD as remote station


Figure 186: COM-LINK connection to an easy800 or another MFD

Establishing a COM-LINK connection to an easy-NET station.


Figure 187: easy-NET operation and COM-LINK connections.

A COM-LINK connection can be established with an easyNET station. The same conditions apply here as with operation without easy-NET.

## Data accesses via COM-LINK

The following data access operations are possible from the active station to the remote station:

| Active station, read |  | Remote station |
| :---: | :---: | :---: |
| Inputs | 1101 to 1116 | 101 to 116 |
| Inputs of local expansion unit | 1R1 to 1R16 | R01 to R16 |
| Outputs | 1Q01 to 1Q08 | Q01 to Q08 |
| Outputs of local expansion unit | 1S01 to 1S08 | S01 to S08 |
| Diagnostics bits of easy-NET | 1ID01 to 1ID08 | ID01 to ID08 |
| Analog inputs | 1IA01 to 1IA04 | IA01 to IA04 |
| Analog output | 1QA01 | QA01 |

Write/read accesses in the marker range

| Active station |  |  | Remote station |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 MD01 |  |  | MD01 |  |  |
| 1 MW01 | 1MW02 |  | MW01 | MW02 |  |
| $1 \mathrm{MB01} 1 \mathrm{MB02}$ | 1MB03 | 1MB04 | MB01 MB02 | MB03 | MB04 |
| 1 M01 to 1 M32 |  |  | M01 to M32 |  |  |
| 1 MD02 |  |  | MD02 |  |  |
| 1 MW03 1MW04 |  |  | MW03 | MW04 |  |
| 1 MB05 1 MB06 | 1 MB07 | 1 MB08 | MB05 MB06 | MB07 | MB08 |
| 1 M33 to 1 M64 |  |  | M33 to M64 |  |  |
| 1 MD03 |  |  | MD03 |  |  |
| 1 MW05 | 1 MW06 |  | MW05 | MW06 |  |
| $1 \mathrm{MB} 091 \mathrm{MB10}$ | 1 MB11 | 1 MB12 | MB09 MB10 | MB11 | MB12 |
| 1 M65 to 1 M96 |  |  | M65 to M96 |  |  |
| 1 MD04 |  |  | MD04 |  |  |
| 1 MW07 1 MW08 |  |  | MW07 MW08 |  |  |
| ..... |  |  | .... |  |  |
| $\ldots$ |  |  |  |  |  |


| 1 MD20 |  |  |  | MD20 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 MW39 |  | 1 MW40 |  | MW39 | MW40 |  |  |
| 1 MB77 | 1 MB78 | 1 MB79 | 1 MB80 | MB77 | MB78 | MB79 | MB80 |

The normal rules for addressing the markers apply.


Ensure a clear separation of the write range of the two stations. The active station should write different markers to the remote station. Otherwise the markers in the last write operation will be overwritten.

## Configuration of the COM-LINK

The active station must have the following settings in order for the COM-LINK connection to be functional:

- Baud rate,
- COM-LINK (active),
- Remote marker range (data exchange range).


## Baud rate COM-LINK

The baud rate can be 9600 Baud or 19200 Baud.

## 

EOH-LINK
FENOTE HFRERE...


In normal applications, select the higher baud rate of 19200 Baud. The baud rate of 9600 baud should only be selected if the connection is frequently faulty.
Factory setting: 9600 Baud

## Activating COM-LINK

COM-LINK must be activated in order for it to function.
Factory setting: not active

## EHUOPATE: 192TME COM-LIWK $\quad \sqrt{6}$ FEHOTE NFRKET...

## FEFE: <br> 14011+4N015 <br> WFITE: 1 WDIG + NHOH

The tick on the COM-LINK menu item indicates that COMLINK is active.

Remote markers, COM-LINK data exchange range
The REMOTE MARKER.. menu only opens if a tick is displayed next to COM-LINK.

Select the REMOTE MARKER... menu option. Here you can determine, select and modify the data exchange range.

In the example the READ range was selected with the marker double words MD11 to MD15.

The WRITE range consists of the marker double words MD16 to MD18.

The entire data exchange range available is the marker range MD01 to MD20 of the remote station. The active station accesses these markers with 1MD*. The * indicates the number of the marker concerned.

The smallest possible unit for defining a marker range is an MD marker double word.

Example:
The read range of the active station is 1 MD02.
The write range of the active station is 1MD03.
The read range of the remote station is therefore MD03.
The write range of the remote station is MD02.

## Operating principle of the COM-LINK connection

 The active station at the COM-LINK must be in RUN mode.Data can only be exchanged with the active station in RUN mode.

The remote station must be in RUN or STOP mode.
The active station scans the remote station. The entire READ marker range is transferred as a string. The entire WRITE marker range is transferred as a string.

Data consistency
The data is located in the image range (data range storing the marker states) of the active station (1MD..) as well as in the image range of the remote station (MD..)

Each station writes data to its own image range asynchronously for data communication. As the serial interface transfers large data volumes slower than the devices overwrite the image ranges, the following applies: one marker double word 1MD.., MD.. is consistent.

Within a program cycle, a marker double word that is overwritten via COM-LINK is not constant. The data via the COM-LINK is written to the status image over the course of the program cycle. This means that a different marker value can be present at the start of the program cycle to after the write operation via COM-LINK.

Sign of life detection COM-LINK, diagnostics contact ID09
In order to determine the proper functioning of the COMLINK connection, the diagnostics contact ID09 is provided on the active station of the COM-LINK connection.

| Status of diagnostics <br> contact ID09 | Status of the connection |
| :--- | :--- |
| "0" | COM-LINK connection <br> operating correctly or <br> no COM-LINK connection <br> selected. |
| "1" | COM-LINK connection not <br> functioning, faulty |

The time required to detect that the COM-LINK is not working properly depends on the baud rate selected and the event concerned.

| Baud rate | Time required for detection of faulty COM-LINK <br> connection. <br> CRC error (data content <br> incorrect) | No response, no hardware <br> connection, remote station <br> not in operation |
| :--- | :--- | :--- |
| 9600 Baud | 250 ms | 1.5 s |
| 19200 Baud | 120 ms | 0.8 s |



## Attention!

If the states of the inputs, outputs or data are required by a station without fail, the respective diagnostics contact should be evaluated and the information applied in accordance with its respective application.

If the respective diagnostics contacts are not evaluated, it may cause faults in your application.

## 7 MFD Settings

Settings can only be carried out on MFD models provided with buttons and LCD display.

EASY-SOFT -PRO can be used to set all models via the software.

## Password protection

The MFD can be protected by a password against unauthorised access.

In this case the password consists of a value between 000001 and 999999. The number combination 000000 is used to delete a password.

Password protection inhibits access to selected areas. The System menu is always protected by an activated password.

The password can protect the following inputs and areas:

- Start or modification of the program.
- Transfer of a circuit diagram to or from a memory card (display/operating unit variants).
- Change of the RUN or STOP mode.
- Calling and modification of function block parameters
- All settings of the real-time clock.
- Modifications of all system parameters.
- Communication with the individual device (looping to other devices possible).
- Switching off the password delete function.

A password that has been entered in MFD is transferred to the memory card together with the circuit diagram, irrespective of whether it was activated or not.

If this MFD circuit diagram is loaded back from the memory card, the password will also be transferred to MFD and is activated immediately.

## Password setup

A password can be set via the System menu regardless of the RUN or STOP modes. You cannot change to the System menu if a password is already activated.

- Press DEL and ALT to call up the System menu.
- Select the menu option SECURITY... to enter the password.
- Press the OK button and change over to the PASSWORD... menu.
- If you press the OK button again, you will access the password input..


If no password has been entered, MFD changes directly to the password display and displays six dashes: No password available.

- Press OK, six zeros will appear
- Set the password using the cursor buttons:
- < > select position in password,
- ヘン set a value between 0 to 9 .


## ENTER FASCMORD 00043?

- Save the new password by pressing OK.

Use OK to exit the password display and proceed with ESC and $\checkmark$ to the RANGE... menu.

The scope of the password has not yet been considered. The password is now valid but not yet activated.

## Selecting the scope of the password

##  FAFMNETEFS <br> TINE <br> OFEFATINE NODE <br> INTEFFFE DELETE FINWT.

- Press the OK button.
- Select the function to be protected or the menu.
- Press the $\mathbf{O K}$ button in order to protect the function or menu (tick = protected).

Standard protection encompasses the programs and circuit diagram.

At least one function or menu must be protected.

- CIRCUIT DIAGRAM: The password is effective on the program with circuit diagram and non-enabled function blocks.
- PARAMETERS: The PARAMETERS menu is protected.
- TIME: Date and time are protected with the password.
- OPERATING MODE: The toggling of the RUN or STOP operating mode is protected.
- INTERFACE: The interface is inhibited for access to a connected device. Programs or commands to other devices connected via the NET network are routed further.
- DELETE FUNCT.: After four failed attempts to enter a password, the "DELETE FUNCTION?" prompt appears. This prompt is not displayed if selected. However, it is no longer possible to make changes in protected areas if you forget the password.


## Activating the password

You can activate an existing password in three different ways:

- automatically when MFD is switched on again,
- automatically after a protected circuit diagram is loaded
- automatically if a telegram has not been sent on the PC interface 30 minutes after unlocking the device (using EASY-SOFT (-PRO),
- via the password menu.
- Press DEL and ALT to call up the System menu.
- Open the password menu via the menu option SECURITY...

MFD will only show this password menu if a password is present.

Make a note of the password before you activate it. If the password is no longer known, MFD can be unlocked (DELETE FUNCTION is not active), however, the circuit diagram and data settings will be lost.


## Attention!

If the password is unknown or lost, and the delete password function is deactivated: The unit can only be reset to the factory setting by the manufacturer. The program and all data are lost.

## - Select ACTIVATE PW and confirm with OK.

The password is now active. MFD will automatically return to the Status display.

You must unlock MFD with the password before you implement a protected function, enter a protected menu or the System menu.

## Unlocking MFD

Unlocking MFD will deactivate the password. You can reactivate password protection later via the password menu or by switching the power supply off and on again.

- Press OK to switch to the main menu.

Fitsompa. .
sToF FIUN pascura. . set clock..

The PASSWORD... entry will flash.

- Press OK to enter the password entry menu.

If MFD shows PROGRAM... in the main menu instead of PASSWORD..., this means that there is no password protection active.

MFD will display the password entry field.

- Set the password using the cursor buttons.
- Confirm with OK.

If the password is correct, MFD will return automatically to the Status display.

The PROGRAM ... menu option is now accessible so that you can edit your circuit diagram.

The System menu is also accessible.

## Changing or deleting the password range

- Unlock MFD.
- Press DEL and ALT to call up the System menu.
- Open the password menu via the menu option SECURITY... and PASSWORD....

| WHMNE FW FWT IVATE FW |
| :---: |

## ENTEF FRESWORD

 XKOKOThe CHANGE PW entry will flash.
MFD will only show this password menu if a password is present.


Modify the six password digits using the cursor buttons.

- Confirm with OK.

Use ESC to exit the security area.


## Deleting

Use number combination 000000 to delete a password.
If a password has not been entered already, MFD will show six dashes:

## Password incorrect or no longer known

If you no longer know the exact password, you can try to reenter the password several times.
$\rightarrow \quad$ The DELETE FUNCTION has not been deactivated.

## ENTEF FHESUOFD

XXXX
You have entered an incorrect password?

- Re-enter the password.


After the fourth entry attempt MFD will ask whether you wish to delete the circuit diagram and data.

- Press
- ESC: No data will be deleted.
- OK: Circuit diagram, data and password are deleted.

MFD will return to the Status display.
$\rightarrow$ If you no longer know the exact password, you can press OK to unlock the protected MFD. The saved circuit diagram and all function relay parameters will be lost.

Pressing ESC will retain the circuit diagram and data. You can then make another four attempts to enter the password.

Changing the menu language

MFD-Titan provides ten menu languages which are set as required via the System menu.

| Language | Display |
| :---: | :---: |
| English | ENGLISH |
| German | DEUTSCH |
| French | Frinteris |
| Spanish | ESPFINOL |
| Italian | ITALIFN0 |
| Portuguese | FORTUEUES |
| Dutch | NEDEFLFINDS |
| Swedish | SUENSKA |
| Polish | FOLSKI |
| Turkish | TUFKEE |

$\rightarrow$
Language selection is only possible if MFD is not password-protected.

- Press DEL and ALT to call up the System menu.
- Select MENU LANGUAGE... to change the menu language.

| ENELIEH | + |
| :---: | :---: |
| OEUTECH | $\checkmark$ |
| FTHNFIS |  |
| ESFHOL | + |

ITHLIFHO
FOFTUGUE
NEDEFLINW
SUENEKH
FOLEKI
TUPKE

The language selection for the first entry ENGLISH is displayed.
Use $\wedge$ or $\vee$ to select the new menu language, e.g. Italian (ITALIANO).
Confirm with OK. ITALIANO is assigned a tick.
Exit the menu with ESC.
sICUPEZZA. . . SISTEFIF...
LiNGUFHENU. . GONFIGMATOFE. .

MFD will now show the new menu language.
Press ESC to return to the Status display.

Changing parameters


MFD allows you to change function relay parameters such as timing relay setpoint values and counter setpoints without having to call up the circuit diagram. This is possible regardless of whether MFD is running a program or is in STOP mode.

- Press OK to switch to the main menu.
- Start the parameter display by selecting PARAMETERS.

All function blocks are displayed as a list.
The following preconditions must be fulfilled in order for a parameter set to be displayed:

- A function relay must have been included in the circuit diagram.
- The PARAMETERS menu must be available.
- The parameter set must have been enabled for access, indicated by the + character at the bottom right of the display.
$\rightarrow \begin{aligned} & \text { Parameter sets can only be enabled or protected via the } \\ & \begin{array}{l}\text { FUNCTION RELAYS menu, or via the circuit diagram with } \\ \text { the " }+ \text { " enable and with " }- \text { " inhibit parameter set } \\ \text { characters. }\end{array}\end{aligned}$


## T明』 <br> >It atagal <br>  <br> QU) 012.050

- Select the required function block with $\wedge$ or $\vee$.
- Press the OK button.
- Scroll with the $\wedge$ or $\vee$ cursor buttons through the constants of the function block inputs.
- Change the values for a parameter set:
- With OK in the Entry mode,
- < > change decimal place,
- $\wedge \vee$ change the value of a decimal place,
- OK save constants or
- ESC Retain previous setting.

Press ESC to leave the parameter display.
$\rightarrow$
Only constants on the function block inputs can be changed.

## Adjustable parameters for function blocks

You can modify the function blocks used in the circuit diagram in three different ways:

- All circuit diagram parameters can be adjusted in STOP mode via the function block editor.
- Setpoints (constants) can be modified in RUN mode via the function block editor.
- Setpoints (constants) can be modified via the PARAMETERS menu.

Adjustable setpoint values are:

- The inputs with all function blocks if constants have been used.
- Switch on and off times with time switches.

In RUN mode MFD operates with a new setpoint as soon as it has been modified in the parameter display and saved with OK.

Setting date, time and daylight saving time

The easy800 devices are equipped with a real-time clock with date and time functions. The "time switch" function block can be used to implement time switch applications.

If the clock has not yet been set or if MFD is switched on after the buffer time has elapsed, the clock starts with the setting "WE 1:00 01.05.2002". The MFD clock operates with date and time so the hour, minute, day, month and year must all be set.

The time, such as: 1:00, indicates the version of the device operating system.

- Select SET CLOCK... from the main menu.

- Set the values for day, time, month and year.
- Press the OK button to access the Entry mode
- <> Move between the parameters,
- へン Change the value,
- OK Save day and time,
- ESC Retain previous setting.

Press ESC to leave the time setting display.

Changing between winter/ summer time (DST)

The easy800 models are fitted with a real-time clock. The clock has various possibilities for changing the DST setting. These are subject to different legal requirements in the EU, GB and USA.

The time change algorithm only applies to the northern hemisphere.

- NONE: no daylight saving time setting.
- MANUAL: a user-defined date for the DST change.
- EU: date defined by the European Union; Commences: last Sunday in March; Ends: last Sunday in October.
- GB: date defined in Great Britain; Commences: last Sunday in March; Ends: fourth Sunday in October.
- US: date defined in the United States of America: Commences: first Sunday in April; Ends: last Sunday in October.

The following applies to all DST variants:
Winter time $\rightarrow$ Summer time: On the day of conversion, the clock moves forward one hour at 2:00 to 3:00

Summer time $\rightarrow$ Winter time: On the day of conversion, the clock moves back one hour at 3:00 to 2:00.

Select SET CLOCK... from the main menu.
This will open the menu for setting the time.

- Select the DST SETTING menu option.


## Selecting DST

MFD shows you the options for the DST change.
The standard setting is NONE for automatic DST changeover (Tick at NONE).

| W0\|F | \( |
| :---: | :---: |
| ) + |  |
| WHPNML |  |
| EU |  |
| GE | + |
| 15 |  |

- Select the required variant and press the OK button.


## Manual selection

You want to enter your own date.

## $\rightarrow$

The following applies to MFD-Titan devices:
The time change algorithm always calculates the date from the year 2000. Enter the time change for the year 2000.

- Proceed to the MANUAL menu and press $2 \times \mathbf{O K}$.
- <> Move between the parameters,
- ヘン Change the value,
- OK Save day and time,
- ESC Retain previous setting.
- Press ESC to leave the display.
- Select the day and time at which summer time is to commence.
- Select the day and time at which summer time is to end.
$\rightarrow \quad \begin{aligned} & \text { The same time for conversion applies as for the legally } \\ & \text { determined variants (EU, GB, US). }\end{aligned}$


## Activating input delay (debounce)

Input signals can be evaluated by MFD with a debounce delay. This enables, for example, the trouble-free evaluation of switches and pushbutton actuators subject to contact bounce.

In many applications, however, very short input signals have to be monitored. In this case, the debounce function can be switched off.

- Press DEL and ALT to call up the System menu.
- Select the SYSTEM menu.

If MFD is password-protected you cannot open the System menu until you have "unlocked" it.

The input delay (debounce) is set with the DEBOUNCE menu item.

## Activating debounce

If a tick $\sqrt{ }$ is set beside $\mathbb{E D O D N} \mathrm{E}$, the input delay is set.
If this is not so, proceed as follows:

- Select DEEOUNTE and press OK.

Debounce mode will be activated and the display will show DEEOUNE $\%$

Press ESC to return to the Status display.

## Deactivating debounce (input delay)

If MFD is showing DEDONTE in the display, this means that Debounce mode has already been deactivated.

Otherwise select DEEOUNE $J$ and press OK.
Debounce mode will be deactivated and the display will show DEEOUNE

Activating and deactivating the P buttons

Even though the cursor buttons (P buttons) have been set as pushbutton actuator inputs in the circuit diagram, this function is not activated automatically. This prevents any unauthorised use of the cursor buttons. The P buttons can be activated in the System menu.
$\rightarrow \quad \begin{aligned} & \text { If MFD is password-protected you cannot open the System } \\ & \text { menu until you have "unlocked" it. }\end{aligned}$
The $P$ buttons are activated and deactivated via the P BUTTONS menu.


- Press DEL and ALT to call up the System menu.
- Select the SYSTEM menu.
- Move to the cursor to the P BUTTONS menu.


## Activating the P buttons

If MFD is displaying $F$ EUTTON $=\quad \sqrt{ }$, this means that the P buttons are active.

- Otherwise select P BUTTONS and press OK.

MFD changes the display to F EUTTONS $V$ and the $P$ buttons are activated.

- Press ESC to return to the Status display.

| DEEOUNE | $\sqrt{1}+$ |
| :---: | :---: |
| F EuTTOME | d |
| FUN MOEE |  |
| CFPC MOE | ¢ |

The P buttons are only active in the Status display and the text display. In this display you can use the $P$ buttons to activate inputs in your circuit diagram.

## Deactivating the $\mathbf{P}$ buttons

- SelectF EUTTONE $\quad d$ and press OK.

MFD changes the display to EUTTONE and the $P$ buttons are deactivated.
$\longrightarrow \quad \begin{aligned} & \text { The P buttons are automatically deactivated when loading } \\ & \text { a circuit diagram from the memory card or via } \\ & \text { EASY-SOFT (-PRO) to MFD, or when deleting a circuit } \\ & \text { diagram in MFD. }\end{aligned}$

## Startup behaviour

The startup behaviour is an important aid during the commissioning phase. The circuit diagram which MFD contains is not as yet fully wired up or the system or machine is in a state which MFD is not permitted to control. The outputs should not be controlled when MFD is switched on.

## Setting the startup behaviour

$\rightarrow$
The MFD devices without a display can only be started in RUN mode.

Requirement: MFD must contain a valid circuit diagram.

- Switch to the System menu.

If MFD is protected by a password, the System menu will not be available until MFD is "unlocked" (see $\rightarrow$ Section "Unlocking MFD" from Page 363).

Specify the operating mode which MFD must use when the supply voltage is applied.

## Activating RUN mode

If MFD displays FUN HODE $\quad i$, this means that MFD will start in Run mode when the supply voltage is applied.



## Deactivating RUN mode

- Select FUN WINE $\quad$ and press OK.

The RUN mode function is deactivated.
The default setting for MFD is for RUN MODE to be displayed. In other words, MFD starts in FUN WDE N when the power is switched on.

| Startup behaviour | Menu display | Status of MFD after <br> startup |
| :--- | :--- | :--- |
| MFD starts in STOP <br> mode | FUN MODE | MFD is in STOP mode |
| MFD starts in RUN <br> mode | FUN MODE | MFD is in RUN mode |

Behaviour when the circuit diagram is deleted
The setting for the startup behaviour is an MFD device function. When the circuit diagram is deleted, this does not result in the loss of the setting selected.

## Behaviour during upload/download to card or PC

When a valid circuit diagram is transferred from MFD to a memory card or the PC or vice versa, the setting is still retained.

[^1]
## Possible faults

MFD will not start in RUN mode:

- a program is not available in MFD.
- you have selected MFD startup in STOP MODE (RUN MODE menu).


## Card startup behaviour

The startup behaviour with memory card is for applications where unskilled personnel change the memory card under no-voltage conditions.
MFD only starts in the Run mode if a memory card with a valid program is inserted.

If the program on the memory card is different to the program in MFD, the program from the card is loaded into easy and easy starts in RUN mode.

- Switch to the System menu.

If MFD is protected by a password, the System menu will not be available until MFD is "unlocked" (see $\rightarrow$ Section "Unlocking MFD" from Page 363).

## Activation of card mode

Requirement: RUN MODE is active.
If MFD displays MPD HOE $\quad$, , this means that when the power supply is switched on, MFD will only start in RUN mode if a memory card with a valid program has been inserted.

| QEEOUNE | $\checkmark$ |
| :---: | :---: |
| F Euttons |  |
| FUN MOWE | $\checkmark$ |
| MFPCMOET | $\sqrt{*}$ |

## - Otherwise select FHPD ME and press OK.

MFD will start up with the program on the card.

- Press ESC to return to the Status display.


The MFD default setting is for display of the CARD MODE menu, i.e. MFD starts in RUN mode without the memory card when the power is switched on.

## Terminal mode

The MFD-Titan also supports the TERMINAL MODE. Terminal mode enables the display and the keypad of the MFD to be used as a terminal for operating another device. In this operating mode you are thus able to remotely control all devices supporting Terminal mode operation. The interface to the other device can be implemented using the serial interface or easy-NET.

TERMINAL MODE operation is only possible if the MFD is in STOP mode.

## Permanent TERMINAL MODE setting

In the SYSTEM menu you set the MFD to start in TERMINAL MODE when the power supply is switched on.

- Switch to the System menu.

If MFD is protected by a password, the System menu will not be available until MFD is "unlocked" (see $\rightarrow$ Section "Unlocking MFD" from Page 363).

## Activating an automatic startup in TERMINAL MODE

 Requirement: The MFD is in RUN or STOP mode without visualization (the System menu must be reachable).
## F EUTTOH: FUN MODE <br> GFRD WODE TERMIMFL MODE ${ }^{f}$ *



The correct station number must be selected in order for the MFD to start TERMINAL MODE with the correct station. $(\rightarrow$ chapter "Commissioning", Page 85)

## F EUTTONS <br> FUN MODE <br> GARD MOE TEFHINHL HOEE

Deactivating an automatic startup in TERMINAL MODE

- Select TEFMINFLL WOE $\quad J$ and press OK.

The automatic starting in TERMINAL MODE has been deactivated.

The default setting of the MFD is for the display of the TERMINAL MODE menu, i.e. MFD starts in RUN or STOP mode when the power is switched on.

The backlight of the LCD display can be set to one of five stages in order to adapt it to local conditions. The display contrast can be set to one of five stages.

The contrast and backlight settings are implemented as device settings.

- Switch to the System menu.

If MFD is protected by a password, the System menu will not be available until MFD is "unlocked" (see $\rightarrow$ Section "Unlocking MFD" from Page 363).


- Select the SVTEM menu.
- Press the OK button.
- Use the $\checkmark$ button to select the DISPLAY menu and press OK.

The menus for setting the contrast and backlight are
mONTHET: -
LIEHTIN: $\quad 15$

| m0NTFAET: | +1 |
| :---: | :---: |
| LIEHTIN: | 75\% |


| OONTHET: | +1 |
| :--- | ---: |
| LIEHTIN: | $75 \%$ |


| GONTEAET: | +1 |
| :--- | ---: |
| LIEHTINE: | $15 \%$ |

CONTFAT: $\quad+1$

LIEHTING 75\%

- Use the cursor buttons $\wedge$ and $\vee$ to move to the LIGHTING menu.
- Press the OK button.
- Use cursor buttons $\wedge$ and $\vee$ to change the value in $25 \%$ steps.
- Set the required backlighting.

The backlight will immediately change to the set value. 0 , $25,50,75$ and $100 \%$ are possible values.

## DONTEFT:

LIEHTME
1018

MFD comes with the following factory setting:
The contrast is set to 0 .
The backlight is set to 75 \%.

## Retention

It is a requirement of system and machine controllers for operating states or actual values to have retentive settings. What this means is that the values will be retained safely even after the supply voltage to a machine or system has been switched off and are also retained until the next time the actual value is overwritten.

The following operands and function blocks can be set to operate retentively:

## - Markers

- Counter function blocks,
- Data function blocks and
- Timing relays.


## Operating hours counter

easy800 provides four retentive operating hours counters. They are always retentive and can only be selectively deleted with a reset command.

## Retentive data volume

200 bytes is the maximum memory range for retentive data (operating hours counters are not included).

## Markers

A user-definable and consistent marker range can be declared as retentive.

## Counters

All C.., CH.. and Cl.. function blocks can be operated with retentive actual values.

## Data function blocks

A user-definable consistent data function block range can be operated with retentive actual values.

## Timing relays

A user-definable and consistent range for timing relays can be run with retentive actual values.

## Requirements

In order to make data retentive, the relevant markers and function blocks must have been declared as retentive.


## Attention!

The retentive data is saved every time the power supply is switched off, and read every time the device is switched on. The data integrity of the memory is guaranteed for $10^{10}$ read/write cycles.

## Setting retentive behaviour

Requirement:
MFD must be in STOP mode.

- Switch to the System menu.


## $\rightarrow$

If MFD is protected by a password, the System menu will not be available until MFD is "unlocked" (see $\rightarrow$ Section "Unlocking MFD" from Page 363).

The default setting of MFD is for no retentive actual value data to be selected. When MFD is in STOP mode or has been switched to a de-energized state, all actual values are cleared.


- Switch to STOP mode.
- Switch to the System menu.
- Proceed to the SYSTEM menu and continue to the RETENTION... menu.
- Press the OK button.

```
NE||-> NE|| +
< ||-> [ ||
OH|O-> [H|O$
    E:20|
```

GIロロ-> GIロロ


E:a口

## $\rightarrow$

|  |
| :---: |
|  |  |
|  |  |
|  |  |

T 咟－ C T 日
E：076

The first screen display is the selection of the marker range．
－ヘン Select a range．
－Press OK to access the Entry modes．
－〈＞Select a position from／to，
－ヘン Set a value．
－Save the input from ．．to ．．with OK．
Press ESC to exit the input for the retentive ranges．
Up to six different ranges can be selected．

The display on the lower right $\mathrm{E}: \|$ indicates the number of free bytes．

Example：
MB 01 to MB 04，C 12 to C 16，DB 01 to DB 16，T 26 to T 32 should be retentive．

124 bytes have been assigned to the retentive data range． 76 bytes are still available．

## Deleting ranges

Set the ranges to be erased to the values from 00 to 00 ．
 retentive．

## Deleting retentive actual values of markers and function blocks

The retentive actual values are cleared if the following is fulfilled（applies only in STOP mode）：

- When the circuit diagram is transferred from EASY-SOFT(-PRO) (PC) or from the memory card to MFD, the retentive actual values are reset to 0 . This also applies when there is no program on the memory card. In this case the old circuit diagram is retained in MFD.
- When changing the respective retentive range.
- When the circuit diagram is deleted via the DELETE PROGRAM menu.


## Transferring retentive behaviour

The setting for retentive behaviour is a circuit diagram setting. In other words, the setting of the retentive menu may also under certain circumstances be transferred to the memory card or by uploading or downloading from the PC.
Changing the operating mode or the circuit diagram When the operating mode is changed or the MFD circuit diagram is modified, the retentive data is normally saved together with their actual values. The actual values of relays no longer being used are also retained.

## Changing the operating mode

If you change from RUN to STOP and then back to RUN, the actual values of the retentive data will be retained.

## Modifying theMFD circuit diagram

If a modification is made to the MFD circuit diagram, the actual values will be retained.

Changing the startup behaviour in the SYSTEM menu The retentive actual values are retained in MFD regardless of the setting.

## Modification of the retentive range

If the set retentive ranges are reduced, only the actual values saved in the range will remain.

If the retentive range is extended, the older data is retained. The new data is written with the current actual values in RUN mode.

Displaying device information

Device information is provided for service tasks and for determining the capability of the device concerned.

This function is only available with devices featuring a display.

Exception: Terminal mode with MFD-Titan.
easy800 enables the display of the following device information:

- AC or DC power supply,
- T (transistor output) or R (relay output),
- C (clock provided),
- A (analog output provided),
- LCD (display provided),
- easy-NET (easy-NET provided),
- OS: 1.10.204 (operating system version),
- CRC: 25825 (checksum of the operating system).
- Switch to the System menu.

If MFD is protected by a password, the System menu will not be available until MFD is "unlocked" (see $\rightarrow$ Section "Unlocking MFD" from Page 363).

Select the SYSTEM menu.

- Press the OK button.
- Use the $\checkmark$ button to select the INFORMATION menu and press OK.

This will display all device information.

OIC TLA LIED NET
05: 1.11.111
GF: 明时

## DE RC Lig

$05: 1.11 .111$
GRC: 6119

Example: MFD-80-B, MFD-CP8-NT, MFD-TA17

Example: MFD-80-B, MFD-CP8-ME, MFD-R16
Display in STOP mode.

Display in RUN mode.
The CRC checksum is not displayed.

- Press ESC to leave the display.


## 8 Inside MFD

## MFD Program cycle

In conventional control systems, a relay or contactor control processes all the rungs in parallel. The speed with which a contactor switches is thus dependent on the components used, and ranges from 15 to 40 ms for relay pick-up and drop-out.

With MFD the circuit diagram is processed with a microprocessor that simulates the contacts and relays of the circuit concerned and thus processes all switching operations considerably faster. Depending on its size, the MFDcircuit diagram is processed cyclically every 0.1 to 40 ms .

During this time, MFD passes through six segments in succession.

How MFD evaluates the circuit diagram:

## Rung

Segment


In the first four segments MFD evaluates the contact fields in succession. MFD checks whether contacts are switched in parallel or in series and saves the switching states of all contact fields.

In the fifth segment, MFD assigns the new switching states to all the coils in one pass.

The sixth segment is located outside of the circuit diagram. MFD uses this to:

## Evaluating function blocks

- process the function blocks which are used: the output data of a function block is updated immediately after processing. MFD processes the function blocks according to the function block list ( $\rightarrow$ FUNCTION RELAYS menu) from top to bottom. You can sort the function block list with EASY-SOFT (-PRO) from Version 4.04. You can then, for example, use the results consecutively.
- establish contact to the "outside world": The output relays Q 01 to $\mathrm{Q}(\mathrm{S})$.. are switched and the inputs 11 to I ( R ).. are read once more.
- MFD also copies all the new switching states to the status image register.
- exchange all data on the easy-NET network (read and write).

MFD only uses this status image for one cycle. This ensures that each rung is evaluated with the same switching states for one cycle, even if the input signals I1 to I12 change their status several times within a cycle.
$\rightarrow$
The following must be observed when operating a PID controller function block!

The cycle time of the program must be less than the scan time of the controller. If the cycle time is greater than the controller scan time, the controller will not be able to achieve constant results.

## COM-LINK data access during the program cycle

 The data exchange with the point-to-point connection can be carried out in any segment of the program cycle. This data exchange increases the cycle time with both active and remote stations. Only use data that is absolutely necessary.
## Loading visualization data

When setting a program to RUN that contains visualization data, the contents of the screens to be displayed have to be loaded.

The time required for loading in the event of a screen change depends on the size of the screens to be loaded. During a screen change, the new screen is loaded from the screen memory into the RAM. Every 200 ms MFD-Titan checks whether a new screen has to be loaded.

The loading time can be calculated as follows:
screen size in byte multiplied by $80 \mu \mathrm{~s}$.
Example:
Screen size 250 bytes:
The loading time for the screen is: $250 \times 80 \mu \mathrm{~s}=20 \mathrm{~ms}$
If you require the MFD to have a small cycle time:
use several small screens so that the loading time is not too long during a screen change. Only display necessary information in the screens concerned $(\rightarrow$ Section "Memory division"Page 280).

The loading of screen data and screen changes can be implemented in any segment of the program cycle. Take this behaviour into account when considering the reaction time of your entire control system.
$\longrightarrow$
Distribute tasks amongst several devices in the easy-NET. easy800 for open and closed-loop control functions, MFD-Titan for display and operator functions.

## Effects on the creation of the circuit diagram

MFD evaluates the circuit diagram in these six segments in succession. You should take into account two factors when creating your circuit diagram.

- The changeover of a relay coil does not change the switching state of an associated contact until the next cycle starts.
- Always wire forward or from top to bottom. Never work backwards.



## Example: self-latching with own contact

Start condition:
Inputs I1 and I2 are switched on.
Q1 is switched off.
This is the circuit diagram of a self-latching circuit. If I1 and 12 are closed, the switching state of relay coil $\mathbb{W}$ "latched" via contact Q \1.

- 1st cycle: Inputs I1 and I2 are switched on. Coil Q1 picks up.
- Contact 『1 remains switched off since MFD evaluates from left to right. The first coil field was already passed when MFD refreshes the output image in the 6th segment.
- 2nd cycle: The self-latching now becomes active. MFD has transferred the coil states at the end of the first cycle to contact \|il


## Example: Do not wire backwards

This example is shown in Section "Creating and modifying connections"Page 141. It was used here to illustrate how NOT to do it.

In the third rung, MFD finds a connection to the second rung in which the first contact field is empty. The output relay is not switched.

When wiring more than four contacts in series, use one of the marker relays.



Figure 188: Circuit diagram with M 01 marker relay

## How MFD evaluates the high-speed counters CF, CH and Cl

In order to evaluate the count pulses of 3 kHz , the highspeed counter function blocks operate with an interrupt routine. The length of the circuit diagram and the associated cycle time has no effect on the counter result.

## Memory management of the MFD-Titan

The MFD is provided with different memories.

- The working memory or RAM, size 8 KByte The RAM only stores the data when the device power supply is active.
- The screen memory, size 24 KByte

The screen memory stores the visualization data created with EASY-SOFT-PRO retentively.

- The program memory, size 8 KByte

The program memory stores the program retentively.

## Distribution of data in the RAM

When the power supply is switched on, the RAM stores the program, the retentive data and the screens to be displayed. This has a direct effect on the size of the program and the screens. The number of retentive data bytes reduces the memory available for program and screens. The largest screen to be displayed likewise reduces the memory available for the program.
$\longrightarrow$
Only use as much retentive data as is actually required.
The screen with the largest memory requirement reduces the memory available for the program. Several smaller screens allow more space for the program.

Use as small pictures as possible with 1 bit greyscale. The pictures should normally be $32 \times 32$ pixels in size in order to fully utilise the optimum brilliance of the display.

Delay times for inputs and The time from reading the inputs and outputs to switching outputs contacts in the circuit diagram can be set in MFD via the delay time.

This function is useful, for example, in order to ensure a clean switching signal despite contact bounce.


Figure 189: MFD input assigned a switch

## Delay times for the MFD inputs

The delay time for DC signals is 20 ms .


Figure 190: Delay times for MFD-DC
An input signal S 1 must therefore be 15 V or 8 V for at least 20 ms on the input terminal before the switch contact will change from 0 to 1 (A). If applicable, this time must also include the cycle time (B) since MFD does not detect the signal until the start of a cycle.

The same debounce delay (C) applies when the signal drops out from 1 to 0 .

If you use high-speed counter function blocks, the debounce delay time for the inputs is 0.025 ms . Otherwise it is not possible to count high-speed signals.

If the debounce is switched off, MFD responds to an input signal after just 0.25 ms .


Figure 191: Switching behaviour with input debounce disabled

Typical delay times with the debounce delay disabled are:

- On-delay for
- I1 to I4: 0.025 ms
- I5 to I12: 0.25 ms
- Off-delay for
- I1 to I4: 0.025 ms
- 15 , 16 and 19 to $\mathrm{I} 10: 0.4 \mathrm{~ms}$
- I7, I8, I11 and I12: 0.2 ms

Ensure that input signals are noise-free if the input debounce is disabled. MFD will even react to very short signals.

Monitoring of shortcircuit/overload with EASY..-D.-T..

Depending on the type of easy in use, it is possible to use the internal inputs I16, R15 and R16 to monitor for short-circuits or overloads on an output.

- MFD-Titan:
- I16: Group fault signal for outputs Q1 to Q4.
- EASY620-D.-TE:
- R16: Group fault signal for outputs S1 to S4.
- R16: Group fault signal for outputs $S 5$ to $S 8$.

| State <br> Outputs | I16, R15 or R16 |
| :--- | :--- |
| No fault found | $0=$ switched off (make contact) |
| At least one output has a <br> fault | $1=$ switched on (make contact) |

I16 can only be edited with MFD versions which have transistor outputs.

The following examples are for $\mathrm{I} 16=\mathrm{Q} 1$ to Q 4 .

## Example 1: Selecting an output with fault indication



```
I|G--------------------------------------- M | |
```

Figure 192: Circuit diagram for fault output via I16
The above circuit diagram functions as follows:
If a transistor output reports a fault, M16 is set by I16. The break contact of M16 switches off output Q1. M16 can be cleared by resetting the MFD power supply.

Example 2: Output of operating state


```
I 1b------------------------------------N1g
```



Figure 193: Output of operating state

The above circuit operates as described in example 1. The signal light is triggered at Q4 for additional overload monitoring. If Q4 has an overload, it would "pulse".

## Example 3: Automatic reset of error signal



Figure 194: Automatic reset of error signal
The above circuit diagram functions in the same way as Example 2. In addition the marker M16 is reset every 60 seconds by timing relay T08 (on-delayed, 60 s). Should I16 remain at 1, M16 will continue to be set. Q1 is set briefly to 1 until 116 switches off again.

Expanding MFD-Titan You can expand MFD-Titan with easy models EASY618-..-RE, EASY620-D.-TE, EASY202-RE locally or use the EASY200-EASY coupling module for remote expansion with easy600 expansion. All available bus interface devices such as EASY204-DP, EASY221-CN, EASY205-ASI or EASY222-DN can be used if present.

Install the units and connect the inputs and outputs as described (see $\rightarrow$ Section "Connecting the expansion unit"Page 49).

You process the inputs of the expansion devices as contacts in the MFD circuit diagram in the same way as you process the inputs of the basic unit. The input contacts are assigned the operand designations R1 to R12.

R15 and R16 are the group fault inputs of the transistor expansion unit ( $\rightarrow$ Section "Monitoring of short-circuit/ overload with EASY...-D.-T..", Page 395).

The outputs are processed as relay coils or contacts like the outputs in the basic unit. The output relays are S 1 to S 8 .

EASY618-..-RE provides the outputs S1 to S6. The other outputs $\mathrm{S7}$, $\mathrm{S8}$ can be used internally.

## How is an expansion unit recognised?

If at least one F . . contact or E . . coil/contact is used in the circuit diagram, the basic unit assumes that an expansion unit is connected.

## Transfer behaviour

The input and output data of the expansion units is transferred serially in both directions. Take into account the modified reaction times of the inputs and outputs of the expansion units.

Input and output reaction times of expansion units The debounce setting has no effect on the expansion unit.

Transfer times for input and output signals:

- Local expansion
- Time for inputs R1 to R12: $30 \mathrm{~ms}+1$ cycle
- Time for outputs S1 to S6 (S8): $15 \mathrm{~ms}+1$ cycle
- Decentralised expansion
- Time for inputs R1 to R12: $80 \mathrm{~ms}+1$ cycle
- Time for outputs S1 to S6 (S8): $40 \mathrm{~ms}+1$ cycle


## Function monitoring of expansion units

If the power supply of the expansion unit is not present, no connection can be established between it and the basic unit. The expansion inputs R1 to R12, R15, R16 are incorrectly processed in the basic unit and show status 0 . It cannot be assured that the outputs S 1 to S 8 are transferred to the expansion unit.

## Warning!

Continuously monitor the functionality of the MFD expansion in order to prevent switching errors in the machine or plant.

The status of the internal input 114 of the basic unit indicates the status of the expansion unit:

- $114=$ = 0 ": expansion unit is functional,
- $114=$ " 1 ": expansion unit is not functional.


## Example

Power can be applied to the expansion unit later than the basic unit. This means that the basic unit is switched to RUN when the expansion unit is absent. The following MFD circuit diagram detects if the expansion unit is functional or not functional.


Figure 195: Circuit diagram for expansion testing
As long as $I 14$ is 1 , the remaining circuit diagram is skipped. If I 14 is 0 , the circuit diagram is processed. If the expansion unit drops out for any reason, the circuit diagram is skipped. M 01 detects whether the circuit diagram was processed for at least one cycle after the power supply is switched on. If the circuit diagram is skipped, all the outputs retain their previous state.

QA analog output The analog output operates with decimal values between 0 and 1023. This corresponds to a 10 -bit resolution. At the output this corresponds to a physical voltage between 0 V and 10 VDC .

Negative values such as: -512 are evaluated as zero and output as 0 V DC.

Positive values greater than 1023 , such as: 2047, are evaluated as 1023 and output as 10 V DC.

Loading and saving programs

You can either use the MFD interface to save programs to a memory card or use EASY-SOFT-PRO and a transmission cable to transfer them to a PC.

## MFD without display and keypad

MFD models without buttons and a display can be loaded with the MFD program via EASY-SOFT-PRO or automatically from the fitted memory card every time the power supply is switched on.

## Interface

The MFD interface is covered. Remove the cover carefully.


Figure 196: Remove cover and plug-in

- To close the slot again, push the cover back onto the slot.


## Memory card

The card is available as an accessory EASY-M-256K for MFD-Titan.

Circuit diagrams containing all the relevant data can be transferred from the EASY-M-256K memory card to MFD-Titan.

Each memory card can hold one MFD program.

Information stored on the memory card is "non-volatile" and thus you can use the card to archive, transfer and copy your circuit diagram.

On the memory card you can save:

- the program,
- all the visualization data of the screens,
- all parameter settings of the circuit diagram,
- the system settings,
- debounce setting,
- P buttons,
- password,
- retention on/off and range,
- easy-NET configuration,
- setting for automatic startup in Terminal mode,
- COM-LINK settings,
- DST settings,
- Card mode.

Insert the memory card in the open interface slot.


Figure 197: Fitting and removing the memory card
$\rightarrow \quad$ With MFD you can insert and remove the memory card even if the power supply is switched on, without the risk of losing data.

## Loading or saving circuit diagrams

You can only transfer circuit diagrams in STOP mode.
The MFD versions without a keypad and display automatically transfer the circuit diagram from the inserted memory card to the MFD-CP8... when the power supply is switched on. If the memory card contains an invalid circuit diagram, MFD will keep the circuit diagram still present on the device.

If you are using a display without a keypad, load the programs with the EASY-SOFT-PRO software. The function for automatically loading from the memory card on power up is only supported on MFD-CP8.. without display and display operating unit.

## FFOIFHM

DELETE POE MFR

THFOMEVIE
DELETE FD

## $\rightarrow$

## FEFLHOE :

- Switch to STOP mode.
- Select PROGRAM... from the main menu.
- Select the CARD... menu option.

The CARD... menu option will only appear if you have inserted a functional memory card.

You can transfer a circuit diagram from MFDto the card and from the card to the MFD memory or delete the content of the card.

If the operating voltage fails during communication with the card, repeat the last procedure since MFDmay not have transferred or deleted all the data.

- After transmission, remove the memory card and close the cover.


## Saving a circuit diagram on the card

- Select DEVICE-CARD.
- Confirm the prompt with OK to delete the contents of the memory card and replace it with the MFD circuit diagram.

Press ESC to cancel.

## Loading a circuit diagram from the card

DEUIWEMFD
THFO-MEVIE
QELETE EFFD

## INWHLIEPFWI

- Select the CARD-> DEVICE menu option.
- Press OK to confirm the prompt if you want to delete the MFDmemory and replace it with the card content.

Press ESC to cancel.
If there are transmission problems, MFD will display the INVALID PROG message.

This either means that the memory card is empty or that the circuit diagram on the card contains function relays that MFD does not recognise.

The analog value comparator function block is only available on 24 V DC versions of MFD. Programs with visualization components are only supported by the MFD.


If the memory card is password-protected, the password will also be transferred to the MFD memory and will be active immediately.

## Deleting a circuit diagram on the card

- Select the DELETE CARD menu option.


## OELETE ?

- Press OK to confirm the prompt and to delete the card content.

Press ESC to cancel.

## Memory card compatibility of the programs

Memory cards with programs are always read by MFD-Titan devices with the newer (higher) operating system version. The program is executable. If programs are written with a newer operating system (higher number) on the memory card, this program can only be read and executed by the same version or a higher one.

## EASY-SOFT-PRO

EASY-SOFT-PRO is a PC program for creating, testing and managing circuit diagrams for MFD.


You should only transfer data between the PC and MFD using the MFDPC interface cable, which is available as accessory EASY800-PC-CAB.

MFD cannot exchange data with the PC while the circuit diagram display is on screen.

Use EASY-SOFT-PRO to transfer circuit diagrams from your PC to MFD and vice versa. Switch MFD to RUN mode from the $P C$ to test the program using the current wiring.

EASY-SOFT-PRO provides extensive help on how to use the software.

- Start EASY-SOFT-PRO and click on Help.

The on-line help provides all additional information about EASY-SOFT-PRO that you will need.

If there are transmission problems, MFD will display the INVALID PROG message.

- Check whether you are using functions that the MFD device does not know:

If the operating voltage fails during communication with the PC, repeat the last procedure. It is possible that not all the data was transferred between the PC and MFD.


Figure 198: Fitting and removing EASY800-PC-CAB

- After transmission, remove the cable and close the cover.


## Device version

Every easy800 has the device version number printed on the rear of the device housing. The device version is indicated by the first two digits of the device number.

Example:

01-10000003886
DC 20.4 .. 28.8 V
3 W

This device is of device version 01.
The device version provides useful service information about the hardware version and the version of the operating system.

## Appendix

## Technical data

General

| MFD-80.. Display/operating unit | MFD-80.. |
| :---: | :---: |
| Front dimensions |  |
| $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ |  |
| With keys [mm] | $86.5 \times 86.5 \times 21.5$ |
| [inches] | $3.41 \times 3.41 \times 0.85$ |
| Without keys [mm] | $86.5 \times 86.5 \times 20$ |
| [inches] | $3.41 \times 3.41 \times 0.79$ |
| Total dimensions with fixing shaft $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ |  |
| With keys [mm] | $86.5 \times 86.5 \times 43$ |
| [inches] | $3.41 \times 3.41 \times 1.69$ |
| Thickness of fixing wall (without intermediate top-hat rail) minimum; maximum |  |
| [mm] | 1; 6 |
| [inches] | 0.04; 0.24 |
| Thickness of fixing wall (with intermediate top-hat rail) minimum; maximum |  |
| [mm] | 1; 4 |
| [inches] | 0.04; 0.16 |
| Weight |  |
| [g] | 130 |
| [lb] | 0.287 |
| Mounting | $222.5 \mathrm{~mm}(0.886 \mathrm{in})$ holes Display fastened with two fixing rings |
| Maximum tightening torque of the fixing rings [ Nm ] | 1.2 to 2 |


| Protective membrane | MFD-XM-80 |
| :---: | :---: |
| Dimensions$W \times H \times D$ |  |
|  |  |
| [mm] | $88 \times 88 \times 25$ |
| [inches] | $3.46 \times 3.46 \times 0.98$ |
| Weight |  |
| [g] | 25 |
| [lb] | 0.055 |
| Mounting | Is fitted over the display/keypad (with Titan front ring) |


| Protective cover | MFD-XS-80 |
| :---: | :---: |
| Dimensions$W \times H \times D$ |  |
|  |  |
| [mm] | $86.5 \times 94 \times 25$ |
| [inches] | $3.41 \times 3.41 \times 0.98$ |
| Weight |  |
| [g] | 36 |
| [lb] | 0.079 |
| Mounting | Is fitted over the display/keypad (without Titan front ring) |


| Power supply/CPU <br> module | MFD-CP8.. |
| :--- | :--- |
| Dimensions <br> $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ |  |
| $\frac{\mathrm{mm}]}{}$ |  |
| [inches] |  |


| Power supply/CPU module | MFD-CP8.. |
| :---: | :---: |
| Weight |  |
| [g] | 145 |
| [lb] | 0.32 |
| Mounting | Fitted on the fixing shaft of the display <br> or <br> on the top-hat rail to DIN 50022, <br> 35 mm (without display) <br> or <br> by means of fixing feet (without display) |


| Inputs/outputs | MFD-R.., MFD-T.. |
| :---: | :---: |
| Dimensions when fitted$W \times H \times D$ |  |
| [mm] | $89 \times 90 \times 25$ |
| [inches] | $3.5 \times 3.54 \times 0.98$ |
| Dimensions when removed$W \times H \times D$ |  |
| [mm] | $89 \times 90 \times 44$ |
| [inches] | $3.5 \times 3.54 \times 1.73$ |
| Weight |  |
| MFD-R..; MFD-T..[g] | 150; 140 |
| MFD-R..; MFD-T..[lb] | 0.33; 0.31 |
| Mounting | Snap fitted into the power supply module |

Dimensions of the MFD-80.. display/operating unit


Dimensions of the MFD-80-XM protective membrane


Dimensions of the MFD-80-XS protective cover


Dimensions of the MFD-CP8.. power supply/CPU module.


Dimensions of the MFD-R.. I/O module , MFD-T..


## General ambient conditions

| Climatic conditions <br> (damp heat constant to IEC 60068-2-78; cyclical to IEC 600618-2-30) <br> (cold to IEC 60068-2-1, heat to IEC 60068-2-2) |  |  |
| :---: | :---: | :---: |
| Ambient temperature Installed horizontally/vertically | ${ }^{\circ} \mathrm{C},\left({ }^{\circ} \mathrm{F}\right)$ | -25 to 55, (-13 to 131) |
| Condensation (power supply unit/CPU; inputs/outputs) |  | Prevent condensation with suitable measures |
| Legibility of the display ( -10 to $0^{\circ} \mathrm{C}$ with activated backlight, uninterrupted duty) | ${ }^{\circ} \mathrm{C},\left({ }^{\circ} \mathrm{F}\right)$ | -5 to 50, (-23 to 122) |
| Storage/transport temperature | ${ }^{\circ} \mathrm{C},\left({ }^{\circ} \mathrm{F}\right)$ | -40 to 70, (-40 to 158) |
| Relative humidity (IEC 60068-2-30), non-condensing | \% | 5 to 95 |
| Air pressure (operation) | hPa | 795 to 1080 |
| Ambient mechanical conditions |  |  |
| Pollution degree |  |  |
| Power supply unit/CPU; inputs/outputs |  | 2 |
| Display/operating unit |  | 3 |
| Degree of protection (EN 50178, IEC 60529, VBG4) |  |  |
| Power supply unit/CPU; inputs/outputs |  | IP20 |
| Display/operating unit |  | IP65, Type 3R, Type 12R |
| Display/operating unit with protective cover |  | IP65, Type 3R, Type 12R |
| Display/operating unit with protective membrane |  | IP65, NEMA Type 4X (Type 3R rain-tight and Type 12 dust-tight) |
| Oscillations (IEC 60068-2-6) |  |  |
| Constant amplitude 0.15 mm | Hz | 10 to 57 |
| Constant acceleration 2 g | Hz | 57 to 150 |
| Shocks (IEC 60068-2-27) semi-sinusoidal $15 \mathrm{~g} / 11 \mathrm{~ms}$ | Shocks | 18 |
| Drop (IEC 60068-2-31)Drop <br> height | mm | 50 |
| Free fall, when packed (IEC 60068-2-32) | m | 1 |


| Electromagnetic compatibility (EMC) |  |  |
| :---: | :---: | :---: |
| Electrostatic discharge (ESD), (IEC/EN 61000-4-2, severity level 3) |  |  |
| Air discharge | kV | 8 |
| Contact discharge | kV | 6 |
| Electromagnetic fields (RFI), (IEC/EN 61000-4-3) | $\mathrm{V} / \mathrm{m}$ | 10 |
| Radio interference suppression (EN 55011, IEC 61000-6-1, 2, 3, 4), limit class |  | B |
| Burst (IEC/EN 61000-4-4, severity level 3) |  |  |
| Power cables | kV | 2 |
| Signal cables | kV | 2 |
| High energy pulses (Surge) MFD (IEC/EN 61000-4-5, severity level 2), power cable symmetrical | kV | 0.5 |
| Line-conducted interference (IEC/EN 61000-4-6) | V | 10 |
| Dielectric strength |  |  |
| Measurement of the air clearance and creepage distance |  | EN 50178, UL 508, CSA C22.2, No 142 |
| Dielectric strength |  | EN 50178 |
| Overvoltage category/degree of pollution |  | II/2 |
| Tools and cable cross-sections |  |  |
| Solid, minimum to maximum | $\mathrm{mm}^{2}$ | 0.2 to 4 |
|  | AWG | 24 to 12 |
| Flexible with ferrule, minimum to maximum | $\mathrm{mm}^{2}$ | 0.2 to 2.5 |
|  | AWG | 24 to 12 |
| Slot-head screwdriver, width | mm | $3.5 \times 0.5$ |
|  | inch | $0.14 \times 0.02$ |

## Display/operating unit

|  |  | MFD-80, MFD80-B |
| :---: | :---: | :---: |
| Power supply |  |  |
| Power supply using power supply unit/CPU MFD-CP8.. |  |  |
| LCD display |  |  |
| Type |  | Graphic/monochrome |
| Visible area W WH | mm | $62 \times 33$ |
| Size of pixels | mm | $0.4 \times 0.4$ |
| Number of pixels (W x H) |  | $132 \times 64$ |
| Spacing (pixel centre to pixel centre) | mm | 0.42 |
| LCD backlight |  | Yes |
| Backlight colour |  | Yellow/green |
| The backlight can be used and programmed in visualization applications |  | Yes |
| LEDs |  |  |
| The backlight can be used and programmed in visualization applications |  | 2 |
| Operating buttons |  |  |
| Number |  | 9 |
| Can be used and programmed in visualization applications |  | 9 |
| Mechanical lifespan de | Actuations | typ. $1 \times 10^{6}$ |
| Pushbutton illumination (LED) |  |  |
| Number |  | 5 |
| Colour |  | Green |

Power supply

|  |  | MFD-CP8... |
| :---: | :---: | :---: |
| Rated voltage |  |  |
| Rated value | V DC, (\%) | 24, (+20, -15) |
| Permissible range | V DC | 20.4 to 28.8 |
| Residual ripple | \% | $\leqq 5$ |
| Input current |  |  |
| For 24 V DC, MFD-CP8.., normally | mA | 125 |
| For 24 V DC, MFD-CP8.., MFD-80.., normally | mA | 250 |
| For 24 V DC, MFD-CP8.. ,MFD-80.., MFD-R.., MFD-T.., normally | mA | 270 |
| Voltage dips, IEC/EN 61131-2 | ms | 10 |
| Heat dissipation |  |  |
| For 24 V DC, MFD-CP8.., normally | W | 3 |
| For 24 V DC, MFD-CP8.., MFD-80.., normally | W | 6 |
| For 24 V DC, MFD-CP8.., MFD-80.., MFD-R.., MFD-T.., normally | W | 6.5 |

CPU, real-time clock/timing relay/memory

## Backup/accuracy of real-time clock (see graph)



| Repetition accuracy of timing relays |  |  |
| :---: | :---: | :---: |
| Accuracy of timing relay (from value) | \% | $\pm 0.02$ |
| Resolution |  |  |
| Range "s" | ms | 5 |
| Range " $\mathrm{M}: \mathrm{S}^{\prime \prime}$ | S | 1 |
| Range " $\mathrm{H}: \mathrm{M}$ " | min | 1 |
| Rung |  | 256 |
| Contacts in series |  | 4 |
| Coil per rung |  | 1 |
| Program memory for program/circuit diagram | kByte | 8 |
| Program memory for display objects (visualization) | kByte | 24 |
| RAM working memory | kByte | 8 |
| Storage of programs (retentive) |  | FRAM |
| Retentive memory (retentive data, non-volatile) |  | FRAM |
| Size | Byte | 200 |
| Operating hours counter | Byte | 16 |
| Write-read cycles FRAM (minimum) |  | $10^{10}$ |

Inputs

|  |  | MFD-R., MFD-T.. |
| :---: | :---: | :---: |
| Digital inputs |  |  |
| Number |  | 12 |
| Inputs usable as analog inputs, (17, 18, 111, 112) |  | 4 |
| Status display |  | LCD status display, if available |
| Electrical isolation |  |  |
| To supply voltage |  | No |
| Between each other |  | No |
| To the outputs |  | Yes |
| To PC interface, memory card, easy-NET network, EASY-LINK |  | Yes |
| Rated voltage |  |  |
| Rated value | V DC | 24 |
| 0 signal |  |  |
| 11 to I6 and 19 to I10 | V DC | < 5 |
| 17, I8, 111, 112 | V DC | < 8 |
| On 1 signal |  |  |
| 11 to I6 and 19 to I10 | V DC | $>15$ |
| 17, 18, 111, 112 | V DC | $>8$ |
| Input current on 1 signal |  |  |
| 11 to 16,19 to 110 at 24 V DC | mA | 3.3 |
| 17, 18, 111, 112 at 24 V DC | mA | 2.2 |
| Delay time for 0 to 1 |  |  |
| Debounce ON | ms | 20 |
| Debounce off, typical |  |  |
| 11 to 14 | ms | 0.025 |
| 15, 16, 19, 110 | ms | 0.25 |
| 17, I8, 111, 112 | ms | 0.15 |


|  |  | MFD-R., MFD-T.. |
| :---: | :---: | :---: |
| Delay time for "1" to "0" |  |  |
| Debounce ON | ms | 20 |
| Debounce OFF, typical |  |  |
| 11 to 14 | ms | 0.025 |
| 15, 16, 19, 110 | ms | 0.25 |
| I7, I8, I11, I12 | ms | 0.15 |
| Cable length (unshielded) | m | 100 |
| High-speed counter inputs, I1 to I4 |  |  |
| Number |  | 4 |
| Cable length (shielded) | m | 20 |
| High-speed up and down counters |  |  |
| Counting frequency | kHz | <3 |
| Pulse shape |  | Square wave |
| Mark-to-space ratio |  | 1:1 |
| Frequency counters |  |  |
| Counting frequency | kHz | < 3 |
| Pulse shape |  | Square wave |
| Mark-to-space ratio |  | 1:1 |
| Incremental encoder counters |  |  |
| Counting frequency | kHz | <3 |
| Pulse shape |  | Square wave |
| Counter inputs I1 and I2, I3 and I4 |  | 2 |
| Signal offset |  | $90^{\circ}$ |
| Mark to space ratio |  | 1:1 |


|  |  | MFD-R.., MFD-T.. |
| :---: | :---: | :---: |
| Analog inputs |  |  |
| Number |  | 4 |
| Electrical isolation |  |  |
| To supply voltage |  | No |
| To the digital inputs |  | No |
| To the outputs |  | Yes |
| To the easy-NET network |  | Yes |
| Input type |  | DC voltage |
| Signal range | V DC | 0 to 10 |
| Resolution analog | V | 0.01 |
| Resolution digital | Bit | 10 |
|  | Value | 0 to 1023 |
| Input impedance | k $\Omega$ | 11.2 |
| Accuracy |  |  |
| Two MFD devices, from actual value | \% | $\pm 3$ |
| Within a unit, from actual value, ( $17,18,111,112$ ) | \% | $\pm 2$ |
| Conversion time, analog/digital |  |  |
| Debounce ON: | ms | 20 |
| Debounce OFF: |  | Each cycle time |
| Input current | mA | <1 |
| Cable length (shielded) | m | 30 |

## Relay outputs

|  |  | MFD-R.. |
| :---: | :---: | :---: |
| Number |  | 4 |
| Type of outputs |  | Relays |
| In groups of |  | 1 |
| Connection of outputs in parallel to increase the output |  | Not permissible |
| Protection for an output relay |  |  |
| Miniature circuit-breaker B16 | A | 16 |
| or fuse (slow-blow) | A | 8 |
| Potential isolation to mains power supply, input, PC interface, NET network, EASY-LINK | emory card, | Yes |
| Safe isolation | V AC | 300 |
| Basic insulation | V AC | 600 |
| Mechanical lifespan | Switch operations | $10 \times 10^{6}$ |
| Contacts relays |  |  |
| Conventional thermal current, (UL) | A | 8, (10) |
| Recommended for load at $12 \mathrm{~V} \mathrm{AC/DC}$ | mA | > 500 |
| Protected against short-circuit $\cos \varphi=1$ 16 A characteristic B (B16) at | A | 600 |
| Protected against short-circuit $\cos \varphi=0.5$ to 0.7 16 A characteristic B (B16) at | A | 900 |
| Rated impulse withstand voltage $U_{\text {imp }}$ contact coil | kV | 6 |
| Rated insulation voltage $U_{\mathrm{i}}$ |  |  |
| Rated operational voltage $U_{\mathrm{e}}$ | V AC | 250 |
| Safe isolation to EN 50178 between coil and contact | V AC | 300 |
| Safe isolation to EN 50178 between two contacts | V AC | 300 |


|  |  | MFD-R.. |
| :---: | :---: | :---: |
| Making capacity, IEC 60947 |  |  |
| AC-15 250 V AC, 3 A (600 0ps/h) | Switch operations | 300000 |
| DC-13 L/R§ 150 ms 24 V DC, 1 A (500 Ops/h) | Switch operations | 200000 |
| Breaking capacity, IEC 60947 |  |  |
| AC-15 250 V AC, 3 A (600 0ps/h) | Switch operations | 300000 |
| DC-13 L/R 150 ms 24 V DC, 1 A (500 Ops/h) | Switch operations | 200000 |
| Filament lamp load |  |  |
| 1000 W at 230/240 V AC | Switch operations | 25000 |
| 500 W at 115/120 V AC | Switch operations | 25000 |
| Fluorescent tube with ballast, $10 \times 58 \mathrm{~W}$ at $230 / 240 \mathrm{~V}$ AC | Switch operations | 25000 |
| Conventional fluorescent tube, compensated, $1 \times 58 \mathrm{~W}$ at $230 / 240 \mathrm{~V} \mathrm{AC}$ | Switch operations | 25000 |
| Conventional fluorescent tube, uncompensated, $10 \times 58 \mathrm{~W}$ at $230 / 240 \mathrm{~V} \mathrm{AC}$ | Switch operations | 25000 |
| Operating frequency, relays |  |  |
| Mechanical switch operations | Switch operations | 10 mill. (107) |
| Mechanical switching frequency | Hz | 10 |
| Resistive lamp load | Hz | 2 |
| Inductive load | Hz | 0.5 |

## UL/CSA

| Uninterrupted current at $240 \mathrm{~V} \mathrm{AC/24V} \mathrm{DC}$ |  | A | 10/8 |
| :---: | :---: | :---: | :---: |
| AC | Control Circuit Rating Codes (utilisation category) |  | B300 Light Pilot Duty |
|  | Max. rated operational voltage | V AC | 300 |
|  | Max. thermal uninterrupted current $\cos \varphi=1$ at B300 | A | 5 |
|  | Maximum make/break capacity $\cos \varphi k 1$ (Make/break) at B300 | VA | 3600/360 |
|  | Control Circuit Rating Codes (utilisation category) |  | R300 Light Pilot Duty |
|  | Max. rated operational voltage | V DC | 300 |
|  | Max. thermal uninterrupted current at R300 | A | 1 |
|  | Maximum make/break capacity at R300 | VA | 28/28 |

## Transistor outputs



|  |  | MFD-T.. |
| :---: | :---: | :---: |
| Lamp load |  |  |
| Q1 to Q4 without RV | W | 5 |
| Residual current at state " 0 " per channel | mA | $<0.1$ |
| Max. output voltage |  |  |
| On 0 state with external load, $10 \mathrm{M} \Omega$ | V | 2.5 |
| On 1 state, $I_{\mathrm{e}}=0.5 \mathrm{~A}$ |  | $U=U_{\text {e }}-1 \mathrm{~V}$ |
| Short-circuit protection <br> Thermal (Q1 to Q4) (evaluation with diagnostics inputs $\operatorname{I16}, \mathrm{I} 15$ ) |  | Yes |
| Short-circuit tripping current for $R_{\mathrm{a}} \leqq 10 \mathrm{~m} \Omega$ (depending on number of active channels and their load) | A | $0.7 \leqq I_{\mathrm{e}} \leqq 2$ |
| Maximum total short-circuit current | A | 8 |
| Peak short-circuit current | A | 16 |
| Thermal cutout |  | Yes |
| Maximum switching frequency with constant resistive load $R_{\mathrm{L}}=100 \mathrm{k} \Omega$ (depends on program and load) | Switch operations/ h | 40000 |
| Parallel connection of outputs with resistive load; inductive load with external suppression circuit ( $\rightarrow$ Section "Connecting transistor outputs", Page 69); combination within a group |  | Yes |
| Group 1: Q1 to Q4 |  |  |
| Maximum number of outputs |  | 4 |
| Total maximum current | A | 2 |
| Attention! <br> Outputs must be actuated simultaneously and for the same time duration. |  |  |
| Status display of the outputs |  | LCD Status display (if provided) |

Inductive load without external suppressor circuit
General explanations:
$T_{0.95}=$ time in milliseconds until $95 \%$ of the stationary current is reached
$T_{0.95} \approx 3 \times T_{0.65}=3 \times \frac{L}{R}$
Utilisation category in groups for

- Q1 to Q4, Q5 to Q8

| $\begin{aligned} & \mathrm{T}_{0.95}=1 \mathrm{~ms} \\ & R=48 \Omega \\ & L=16 \mathrm{mH} \end{aligned}$ | Utilisation factor per group $\mathrm{g}=$ |  | 0.25 |
| :---: | :---: | :---: | :---: |
|  | Relative duty factor | \% | 100 |
|  | Max. switching frequency $f=0.5 \mathrm{~Hz}$ <br> Max. duty factor $\text { DF = } 50 \%$ | Switch operations/h | 1500 |
| $\begin{aligned} & \hline \text { DC13 } \\ & T_{0.95}=72 \mathrm{~ms} \\ & R=48 \Omega \\ & L=1.15 \mathrm{H} \end{aligned}$ | Utilisation factor $\mathrm{g}=$ |  | 0.25 |
|  | Relative duty factor | \% | 100 |
|  | Max. switching frequency $f=0.5 \mathrm{~Hz}$ <br> Max. duty factor $D F=50 \%$ | Switch operations/h | 1500 |

Other inductive loads:

| $\begin{aligned} & T_{0.95}=15 \mathrm{~ms} \\ & R=48 \Omega \\ & L=0.24 \mathrm{H} \end{aligned}$ | Utilisation factor $\mathrm{g}=$ |  | 0.25 |
| :---: | :---: | :---: | :---: |
|  | Relative duty factor | \% | 100 |
|  | Max. switching frequency $f=0.5 \mathrm{~Hz}$ <br> Max. duty factor $\text { DF = } 50 \%$ | Switch operations/h | 1500 |
| Inductive loading with external suppressor circuit for each load <br> $(\rightarrow$ Section "Connecting transistor outputs", Page 69) |  |  |  |
| Utilisation factor $\mathrm{g}=$ |  |  | 1 |
|  | Relative duty factor | \% | 100 |
|  | Max. switching frequency Max. duty factor | Switch operations/h | Depends on the suppressor circuit |

## Analog output

|  |  | $\begin{aligned} & \text { MFD-RA17, } \\ & \text { MFD-TA17 } \end{aligned}$ |
| :---: | :---: | :---: |
| Number |  | 1 |
| Electrical isolation |  |  |
| To power supply |  | No |
| To the digital inputs |  | No |
| To the digital outputs |  | Yes |
| To the easy-NET network |  | Yes |
| Output type: |  | DC voltage |
| Signal range | V DC | 0 to 10 |
| Output current max. | mA | 10 |
| Load resistor | $\mathrm{k} \Omega$ | 1 |
| Short-circuit and overload proof |  | Yes |


|  |  | $\begin{aligned} & \text { MFD-RA17, } \\ & \text { MFD-TA17 } \end{aligned}$ |
| :---: | :---: | :---: |
| Resolution analog | V DC | 0.01 |
| Resolution digital | Bit | 10 |
|  | Value | 0 to 1023 |
| Transient recovery time | $\mu \mathrm{s}$ | 100 |
| Accuracy ( -25 to $55^{\circ} \mathrm{C}$, related to the range | \% | 2 |
| Accuracy ( $25^{\circ} \mathrm{C}$ ), related to the range | \% | 1 |
| Conversion time |  | Each CPU cycle |

## easy-NET network

|  | MFD-CP8-NT |
| :---: | :---: |
| Number of stations | 8 |
| Bus length/transmission speed ${ }^{1)} \mathrm{m} / \mathrm{kBaud}$ | $6 / 1000$ $25 / 500$ $40 / 250$ $125 / 125$ $300 / 50$ $700 / 20$ $1000 / 10$ |
| Electrical isolation | Yes |
| To power supply, inputs, outputs, EASY-LINK, PC interface, memory module |  |
| Bus termination ( $\rightarrow$ accessories) | Yes |
| First and last station |  |
| Plug connector ( $\rightarrow$ accessories) poles | 8 |
| Type | RJ45 |

## MFD-CP8-NT

| Cable cross-sections, with cable lengths and cable resistance/m |  |  |
| :---: | :---: | :---: |
| Cross-section up to $1000,<16 \mathrm{~m} / \mathrm{m}$ | mm² (AWG) | 1.5 (16) |
| Cross-section up to 600, <26 mת/m | $\mathrm{mm}^{2}$ (AWG) | 0.75 to 0.8 (18) |
| Cross-section up to $400,<40 \mathrm{~m} \Omega / \mathrm{m}$ | $\mathrm{mm}^{2}$ (AWG) | 0.5 to $0.6(20,19)$ |
| Cross-section up to 250, <60 m $/ \mathrm{m}$ | $\mathrm{mm}^{2}$ (AWG) | 0.34 to $0.5(22,21,20)$ |
| Cross-section up to $175,<70 \mathrm{~m} / \mathrm{m}$ | $\mathrm{mm}^{2}$ (AWG) | 0.25 to $0.34(23,22)$ |
| Cross-section up to $40,<140 \mathrm{~m} / \mathrm{m}$ | $\mathrm{mm}^{2}$ (AWG) | 0.13 (26) |

1) Bus lengths above 40 m can only be achieved with cables with
reinforced cross-section and connection adapter.

## List of the function blocks Function blocks

| Element | Meaning of abbreviation | Function block designation | Page |
| :---: | :---: | :---: | :---: |
| A | analog value comparator | Analog value comparator | 160 |
| AR | arithmetic | Arithmetic | 163 |
| BC | block compare | Data block compare | 167 |
| BT | block transfer | Data block transfer | 174 |
| BV | Boolean operation | Boolean operation | 185 |
| C | counter | Counters | 188 |
| CF | counter frequency | Frequency counters | 195 |
| CH | counter high-speed | High-speed counters | 199 |
| Cl | counter fast incremental value encoder | High-speed incremental encoder | 205 |
| CP | comparators | Comparators | 210 |
| D | display | Text function block | 212 |
| DB | data block | Data function block | 213 |
| DC | DDC controller (direct digital control) | PID controllers | 215 |
| FT | filter | PT1 signal smoothing filter | 221 |
| GT | GET | GET network | 215 |
| HW | hora(lat) week | Seven day timer | 226 |
| HY | hora(lat) year | Twelve month timer | 231 |
| LS | linear scaling | Value scaling | 235 |
| MR | master reset | Master reset | 242 |
| NC | numeric coding | Numerical converters | 243 |
| OT | operating time | Operating hours counter | 249 |
| PT | PUT | PUT network | 250 |
| PW | pulse width modulation | Pulse width modulation | 216 |
| SC | synchronize clocks | Synchronise clock via network | 255 |


| Element | Meaning of <br> abbreviation | Function block designation | Page |  |
| :--- | :--- | :--- | :--- | :--- |
| ST | set time | Set cycle time | 221 |  |
| T | timing relays |  | Timing relay | 259 |
| VC |  | Value capsuling |  | Value limitation |
| $:$ |  |  | 272 |  |

## Function block coils

| Coil | Meaning of abbreviation | Description |
| :---: | :---: | :---: |
| C- | count input | Counter input |
| D_ | direction input | Count up/down indicator |
| ED | enable Differential component | Activate differential component |
| El | enable integral component | Activate integral component |
| EN | enable | Enable module |
| EP | enable proportional component | Activate proportional component |
| RE | reset | Reset actual value to zero |
| SE | set enable | Set to a predefined value |
| ST | stop | STOP block processing |
| T_ | trigger | Trigger coil |

## Function block contacts

| Contact | Meaning of abbreviation | Description |
| :---: | :---: | :---: |
| CY | carry | Status "1", if the value range is exceeded; (carry) |
| E1 | error 1 | Error 1, dependent on function block |
| E2 | error 2 | Error 2, dependent on function block |
| E3 | error 3 | Error 3, dependent on function block |
| EQ | equal | Comparison result, status 1 if values equal. |
| FB | fall below | Status " 1 ", if the actual value is less than or equal to the lower setpoint value; |
| GT | greater than | Status 1 if the value at $11>12$; |
| LI | limit indicator | Value range manipulated variable exceeded |
| LT | less than | Status 1 if the value at $11<12$; |
| OF | overflow | Status " 1 ", if the actual value is greater than or equal to the upper setpoint value; |
| Q1 | output (Q1) | Switch output |
| QV | output value | Current actual value of the function block (e.g. counter value); |
| ZE | zero | Status " 1 ", if the value of the element input QV is equal to zero; |

## Function block inputs (constants, operands)

| Input | Meaning of abbreviation | Description |
| :---: | :---: | :---: |
| F1 | Factor 1 | Gain factor for 11 ( $11=\mathrm{F} 1 \times$ Value) |
| F2 | Factor 2 | Gain factor for I 2 ( $12=\mathrm{F} 2 \times$ Value $)$ |
| HY | Hysteresis | Switching hysteresis for value I2 (Value HY applies to positive and negative hysteresis.) |
| 11 | Input 1 | 1st input word |
| 12 | Input 2 | 2nd input word |
| KP | Standard | Proportional gain |
| ME | Minimum make time | Minimum make time |
| MV | manual value | Manual manipulated variable |
| NO | numbers of elements | Number of elements |
| OS | Offset | Offset for the value I1 |
| PD | Period duration | Period duration |
| SH | Setpoint high | Upper limit value |
| SL | Setpoint Iow | Lower limit value |
| SV | Set value | Defined actual value (Preset) |
| TC |  | Scan time |
| TG |  | Recovery time |
| TN | Standard | Rate time |
| TV | Standard | Reset time |
| X1 | X1, interpolation point 1 abscissa | Lower value of source range |
| X2 | Interpolation point 2 abscissa | Upper value of source range |
| Y1 | Interpolation point 1 ordinate | Lower value of target range |
| Y2 | Interpolation point 2 ordinate | Upper value of target range |

## Function block output (operands)

| Input | Meaning of abbreviation | Description |
| :--- | :--- | :--- |
| QV | Output value | Output value |

Other operands

| Other <br> operands | Description |
| :--- | :--- |
| MB | Marker byte (8-bit value) |
| IA | Analog input (if available on device!) |
| MW | Marker word (16-bit value) |
| QA | Analog output (if available on device!) |
| MD | Marker double word (32-bit value) |
| NU | Constant (number), value range from - <br> $2147483648 ~ t o ~+2147 ~ 483647 ~$ |

Memory requirement

| Memory requirement | The following table provides requirement of the easy800 respective constants: | an overview of the memory ngs, function blocks and their |
| :---: | :---: | :---: |
|  | Space requirement per circuit conn./function block | Space requirement per constant on the function block input |
|  | Byte | Byte |
| Rung | 20 | - |
| Function blocks |  |  |
| A | 68 | 4 |
| AR | 40 | 4 |
| BC | 48 | 4 |
| BT | 48 | 4 |
| BV | 40 | 4 |
| C | 52 | 4 |
| CF | 40 | 4 |
| CH | 52 | 4 |
| Cl | 52 | 4 |
| CP | 32 | 4 |
| D | 160 |  |
| DC | 96 | 4 |
| DB | 36 | 4 |
| FT | 56 | 4 |
| GT | 28 |  |
| HW | 68 | 4 (per channel) |
| HY | 68 | 4 (per channel) |
| LS | 64 | 4 |
| MR | 20 |  |
| NC | 32 | 4 |


|  | Space requirement per <br> circuit conn./function block | Space requirement per <br> constant on the function <br> block input <br> Byte |
| :--- | :--- | :--- |
| OT | 36 | 4 |
| PT | 36 | 4 |
| PW | $\frac{48}{20}$ | 4 |
| SC | 24 | 4 |
| ST | 48 | 4 |
| T | 40 | 4 |
| VC | - | - |
| $:$ |  |  |

## Index

A Actual values ..... 159
Add
Rung ..... 92
Switching contact ..... 91
B Break contact ..... 122
Inverting ..... 141
Bus termination resistor ..... 74
Button
ALT ..... 92
DEL ..... 92
OK ..... 89, 120
Buttons ..... 18
C Cable cross-sections ..... 74
Cable length ..... 57, 74
Cable protection ..... 54
Circuit diagram
Checking ..... 147
Coil field ..... 135
Contact fields ..... 135
Deleting ..... 97
Display ..... 90, 135
Fast entry ..... 97
Grid ..... 90, 135
Internal processing ..... 387
Load ..... 406
Operating buttons ..... 120
Overview ..... 135
Rung ..... 135
Saving ..... 403, 406
Testing ..... 94, 147
Wiring ..... 92, 141
Coil field ..... 135
Coil functionContactor154
Impulse relay ..... 154
Latching relay ..... 155
Overview ..... 153
COM-LINK ..... 350
Activation ..... 355
Baud rate ..... 354
Configuration ..... 354
Data access ..... 352,389
Operating principle ..... 356
Sign of life detection ..... 356
Connecting the brightness sensor ..... 64
Connecting the setpoint potentiometer ..... 63
Connecting transistor outputs ..... 69
Connection
20 mA sensor ..... 64
Analog inputs ..... 62
Analog output ..... 71
Brightness sensor ..... 64
Contactors, relays ..... 67
Frequency generator ..... 65
High-speed counters ..... 65
Incremental encoder ..... 66
MFD DC power supply ..... 53
MFD-AC power supply ..... 51
MFD-DC inputs ..... 60
NET network ..... 73
Outputs ..... 66
Proximity switch ..... 60
Pushbutton actuators, switches ..... 57, 60
Relay outputs ..... 67
Serial interface ..... 78
Setpoint potentiometer ..... 63
Temperature sensor ..... 64
Transistor outputs ..... 69
Connection cross-sections MFD cables ..... 49
Screw terminals ..... 49
ConnectionsDeleting142
Entering ..... 141
Position in circuit diagram ..... 135
Contact fields ..... 135
Counter relay ..... 188, 205
Parameters ..... 196, 200, 206
Counters
High-speed ..... 65, 199
High-speed incremental encoder ..... 205
Cursor display ..... 30, 120
Cycle ..... 387
D Data consistency ..... 356
Debounce
Setting ..... 372
Delay times
For easy-DC ..... 393
Input and output ..... 392
Deleting retentive actual values ..... 382
Device overview ..... 16
Dimensions, easy ..... 409
E EASY...-AC-.E AC expansion units ..... 52
Expanding ..... 81
Expanding inputs ..... 81
Expanding outputs ..... 81
Expansion
Local ..... 81
Remote ..... 83
F Fixing brackets ..... 47
for ..... 392
Frequency counters ..... 195
Function blocks
Evaluating ..... 388
List ..... 430
Function relay
Counter relay ..... 205
Counter, high-speed ..... 199
Counter, high-speed incremental encoder ..... 205
Counters ..... 188
Example ..... 274
Frequency counters ..... 195
Overview ..... 158
Time switch ..... 226, 231
Timing relay ..... 259
I Impulse relay ..... 154
Increasing the input current ..... 59
Incremental encoder ..... 66, 205
Input contacts ..... 138
Inrush current limitation ..... 59
Interface ..... 401
Interference ..... 57
Inverting ..... 141
J Jumps ..... 239
L Latching ..... 154
Latching relay ..... 155
LED display ..... 21M Main menuOverview23
Selection ..... 20
Make contact ..... 122
Inverting ..... 141
Marker relay ..... 390
Memory card
Deleting ..... 405
Insertion ..... 402
Memory management Program memory ..... 391
RAM ..... 391
Screen memory ..... 391
Menu
Changing level ..... 89
Changing the language ..... 366
Language setting ..... 85, 336
Operator guidance ..... 19
Message
INVALID PROG ..... 405, 406
MFD ..... 387
Evaluating the circuit diagram ..... 387
Operating modes ..... 86
Overview ..... 16
Mode
Changing ..... 94
Mounting
Display/operating unit ..... 37
Inputs/outputs onto the power supply/CPU module ..... 43
Power supply/CPU module ..... 40
Protective cover ..... 34
Protective membrane ..... 32
Screw fixing ..... 47
Top-hat rail ..... 40, 45
N NetworkAddressing337
Automatic change of the RUN and STOP mode 343
Cable ..... 50
Cables ..... 76
Changing the write repetition rate ..... 342
Configuration of the COM-LINK ..... 354
Configuring input/output devices ..... 344
Connecting the NET network ..... 73
Data accesses via COM-LINK ..... 352
Introduction to COM-LINK ..... 350
Station message types ..... 345
Station signs of life ..... 346
Topology ..... 337, 351
Transfer behaviour ..... 345
Transmission security ..... 349
Network cables ..... 76
Number formats ..... 135
0 Operating principles ..... 18
Output relay ..... 138
Overload ..... 71, 395
Monitoring with EASY..-D.-T. ..... 395
P Pbuttons ..... 146
Activating and deactivating ..... 373
Parameter display Counter relay ..... 200, 206
Timing relay ..... 196
Parameters
Change ..... 367
Display ..... 367
Inhibit access ..... 367
PasswordActivation362
Change ..... 364
Deleting ..... 364
Protection removal ..... 365
Setup ..... 360
Pause time ..... 342
Plug (network cable) ..... 50
Power failure ..... 86
Power flow display ..... 94, 95, 147
Program ..... 387
Cycle ..... 387
Load ..... 400
Saving ..... 400
R Relay coil
Change ..... 138
Coil function ..... 139, 153
Deleting ..... 141
Entering ..... 93, 138
Relays
Connecting the outputs ..... 67
Overview ..... 128, 131
Removing
Inputs/outputs ..... 44
Power supply/CPU module ..... 45
Reset ..... 155
Retention
Setting behaviour ..... 381
Transferring behaviour ..... 383
Retention requirements
Permitted easy models ..... 381
Retentive behaviour ..... 383
On circuit diagram transfer ..... 383
Setting ..... 381
RUN, start behaviour ..... 86
RUN/STOP changeover ..... 94
Rung
Add new ..... 92
Deleting ..... 145
Insert ..... 143
Number ..... 135
S Screw mounting ..... 47
Sealing the protective cover ..... 36
Sensor ( 20 mA ) connection ..... 64
Serial interface ..... 78
Set ..... 155
Setpoints ..... 72, 159, 368
Setting LCD backlight ..... 378
Setting LCD contrast ..... 378
Setting the time ..... 369
Short-circuit ..... 71, 395
Monitoring with EASY..-D.-T ..... 395
Startup behaviour ..... 374, 376
After the circuit diagram is deleted ..... 375
Basic setting ..... 375, 377, 378, 379, 380
Possible faults ..... 376
Setting ..... 374
With upload/download to card or PC ..... 375
Station
Active ..... 350
Remote ..... 350
Status display ..... 20
Status image register ..... 388
Suppressing contact bounce ..... 392
Switching contact ..... 141
Change ..... 138
Contact name ..... 138
Contact number ..... 138
Cursor buttons ..... 146
Deleting ..... 141
Entering ..... 91, 138
Invert ..... 92
Overview ..... 121
System menu Selection ..... 20
T Temperature sensor connection ..... 64
Terminal mode ..... 86
Tightening torque ..... 49
Time switch
24 hour switching ..... 231
Overnight switching ..... 229
Power failure ..... 230
Switching at the weekend ..... 229
Switching on working days ..... 228
Time overlaps ..... 230
Timing relay
On-delayed ..... 254, 263
Operating modes ..... 260
Wiring ..... 259
Tool for cage clamp terminals ..... 49
Tool for easy expansion unit ..... 49
Two-wire proximity switches ..... 59
V Visualization data Load ..... 389
W Weekday setting ..... 369
Wiring
Backwards ..... 390
Deleting ..... 92
Entering ..... 92
Relay coils ..... 154
Rules ..... 154
with ..... 395

# Moeller GmbH Industrieautomation Hein-Moeller-Straße 7-11 <br> D-53115 Bonn 

## E-Mail: info@moeller.net Internet: www.moeller.net

© 2003 by Moeller GmbH
Subject to alteration
AWB2528-1480GB Doku/Doku/Eb 06/04
Printed in the Federal Republic of Germany ( $x x / x x$ )
Article No.: 267188


Think future. Switch to green.


[^0]:    $\rightarrow$
    The P buttons are only detected as switches in the Status menu.

[^1]:    $\rightarrow$
    The MFD devices without a display can only be started in RUN mode.

